Unit-norm symmetric matrices
Manifolds.SphereSymmetricMatrices
โ TypeSphereSymmetricMatrices{n,๐ฝ} <: AbstractEmbeddedManifold{โ,TransparentIsometricEmbedding}
The Manifold
consisting of the $n ร n$ symmetric matrices of unit Frobenius norm, i.e.
where $\cdot^{\mathrm{H}}$ denotes the Hermitian, i.e. complex conjugate transpose, and the field $๐ฝ โ \{ โ, โ\}$.
Constructor
SphereSymmetricMatrices(n[, field=โ])
Generate the manifold of n
-by-n
symmetric matrices of unit Frobenius norm.
ManifoldsBase.check_manifold_point
โ Methodcheck_manifold_point(M::SphereSymmetricMatrices{n,๐ฝ}, p; kwargs...)
Check whether the matrix is a valid point on the SphereSymmetricMatrices
M
, i.e. is an n
-by-n
symmetric matrix of unit Frobenius norm.
The tolerance for the symmetry of p
can be set using kwargs...
.
ManifoldsBase.check_tangent_vector
โ Methodcheck_tangent_vector(M::SphereSymmetricMatrices{n,๐ฝ}, p, X; check_base_point = true, kwargs... )
Check whether X
is a tangent vector to manifold point p
on the SphereSymmetricMatrices
M
, i.e. X
has to be a symmetric matrix of size (n,n)
of unit Frobenius norm. The optional parameter check_base_point
indicates, whether to call check_manifold_point
for p
.
The tolerance for the symmetry of p
and X
can be set using kwargs...
.
ManifoldsBase.manifold_dimension
โ Methodmanifold_dimension(M::SphereSymmetricMatrices{n,๐ฝ})
Return the manifold dimension of the SphereSymmetricMatrices
n
-by-n
symmetric matrix M
of unit Frobenius norm over the number system ๐ฝ
, i.e.
ManifoldsBase.project
โ Methodproject(M::SphereSymmetricMatrices, p, X)
Project the matrix X
onto the tangent space at p
on the SphereSymmetricMatrices
M
, i.e.
where $\cdot^{\mathrm{H}}$ denotes the Hermitian, i.e. complex conjugate transposed.
ManifoldsBase.project
โ Methodproject(M::SphereSymmetricMatrices, p)
Projects p
from the embedding onto the SphereSymmetricMatrices
M
, i.e.
where $\cdot^{\mathrm{H}}$ denotes the Hermitian, i.e. complex conjugate transposed.