Centered matrices
Manifolds.CenteredMatrices โ TypeCenteredMatrices{m,n,๐ฝ} <: AbstractEmbeddedManifold{๐ฝ,TransparentIsometricEmbedding}The manifold of $m ร n$ real-valued or complex-valued matrices whose columns sum to zero, i.e.
where $๐ฝ โ \{โ,โ\}$.
Constructor
CenteredMatrices(m, n[, field=โ])Generate the manifold of m-by-n (field-valued) matrices whose columns sum to zero.
ManifoldsBase.check_manifold_point โ Methodcheck_manifold_point(M::CenteredMatrices{m,n,๐ฝ}, p; kwargs...)Check whether the matrix is a valid point on the CenteredMatrices M, i.e. is an m-by-n matrix whose columns sum to zero.
The tolerance for the column sums of p can be set using kwargs....
ManifoldsBase.check_tangent_vector โ Methodcheck_tangent_vector(M::CenteredMatrices{m,n,๐ฝ}, p, X; check_base_point = true, kwargs... )Check whether X is a tangent vector to manifold point p on the CenteredMatrices M, i.e. that X is a matrix of size (m,n) whose columns sum to zero and its values are from the correct AbstractNumbers. The optional parameter check_base_point indicates, whether to call  check_manifold_point  for p. The tolerance for the column sums of p and X can be set using kwargs....
ManifoldsBase.manifold_dimension โ Methodmanifold_dimension(M::CenteredMatrices{m,n,๐ฝ})Return the manifold dimension of the CenteredMatrices m-by-n matrix M over the number system ๐ฝ, i.e.
where $\dim_โ ๐ฝ$ is the real_dimension of ๐ฝ.
ManifoldsBase.project โ Methodproject(M::CenteredMatrices, p, X)Project the matrix X onto the tangent space at p on the CenteredMatrices M, i.e.
where $c_i = \frac{1}{m}\sum_{j=1}^m x_{j,i}$ for $i = 1, \dots, n$.
ManifoldsBase.project โ Methodproject(M::CenteredMatrices, p)Projects p from the embedding onto the CenteredMatrices M, i.e.
where $c_i = \frac{1}{m}\sum_{j=1}^m p_{j,i}$ for $i = 1, \dots, n$.