Multinomial doubly stochastic matrices
Manifolds.AbstractMultinomialDoublyStochastic
— TypeAbstractMultinomialDoublyStochastic{N} <: AbstractEmbeddedManifold{ℝ, DefaultIsometricEmbeddingType}
A common type for manifolds that are doubly stochastic, for example by direct constraint MultinomialDoubleStochastic
or by symmetry MultinomialSymmetric
, as long as they are also modeled as DefaultIsometricEmbeddingType
AbstractEmbeddedManifold
s.
Manifolds.MultinomialDoubleStochastic
— TypeMultinomialDoublyStochastic{n} <: AbstractMultinomialDoublyStochastic{N}
The set of doubly stochastic multinomial matrices consists of all $n×n$ matrices with stochastic columns and rows, i.e.
where $\mathbf{1}_n$ is the vector of length $n$ containing ones.
The tangent space can be written as
where $\mathbf{0}_n$ is the vector of length $n$ containing zeros.
More details can be found in Section III[DouikHassibi2019].
Constructor
MultinomialDoubleStochastic(n)
Generate the manifold of matrices $\mathbb R^{n×n}$ that are doubly stochastic and symmetric.
ManifoldsBase.check_manifold_point
— Methodcheck_manifold_point(M::MultinomialDoubleStochastic, p)
Checks whether p
is a valid point on the MultinomialDoubleStochastic
(n)
M
, i.e. is a matrix with positive entries whose rows and columns sum to one.
ManifoldsBase.check_tangent_vector
— Methodcheck_tangent_vector(M::MultinomialDoubleStochastic p, X; check_base_point = true, kwargs...)
Checks whether X
is a valid tangent vector to p
on the MultinomialDoubleStochastic
M
. This means, that p
is valid, that X
is of correct dimension and sums to zero along any column or row.
The optional parameter check_base_point
indicates, whether to call check_manifold_point
for p
.
ManifoldsBase.manifold_dimension
— Methodmanifold_dimension(M::MultinomialDoubleStochastic{n}) where {n}
returns the dimension of the MultinomialDoubleStochastic
manifold namely
ManifoldsBase.project
— Methodproject(
M::AbstractMultinomialDoublyStochastic,
p;
maxiter = 100,
tolerance = eps(eltype(p))
)
project a matrix p
with positive entries applying Sinkhorn's algorithm. Note that this projct method – different from the usual case, accepts keywords.
ManifoldsBase.project
— Methodproject(M::MultinomialDoubleStochastic{n}, p, Y) where {n}
Project Y
onto the tangent space at p
on the MultinomialDoubleStochastic
M
, return the result in X
. The formula reads
where $⊙$ denotes the Hadamard or elementwise product and $\mathbb{1}_n$ is the vector of length $n$ containing ones. The two vectors $α,β ∈ ℝ^{n×n}$ are computed as a solution (typically using the left pseudo inverse) of
where $I_n$ is the $n×n$ unit matrix and $\mathbf{1}_n$ is the vector of length $n$ containing ones.
ManifoldsBase.retract
— Methodretract(M::MultinomialDoubleStochastic, p, X, ::ProjectionRetraction)
compute a projection based retraction by projecting $p\odot\exp(X⨸p)$ back onto the manifold, where $⊙,⨸$ are elementwise multiplication and division, respectively. Similarly, $\exp$ refers to the elementwise exponentiation.
ManifoldsBase.vector_transport_to
— Methodvector_transport_to(M::MultinomialDoubleStochastic, p, X, q)
transport the tangent vector X
at p
to q
by projecting it onto the tangent space at q
.
Literature
- DouikHassibi2019
A. Douik, B. Hassibi: Manifold Optimization Over the Set of Doubly Stochastic Matrices: A Second-Order Geometry, IEEE Transactions on Signal Processing 67(22), pp. 5761–5774, 2019. doi: 10.1109/tsp.2019.2946024, arXiv: 1802.02628.