Symmetric matrices
Manifolds.SymmetricMatrices โ TypeSymmetricMatrices{n,๐ฝ} <: AbstractDecoratorManifold{๐ฝ}The AbstractManifold $ \operatorname{Sym}(n)$ consisting of the real- or complex-valued symmetric matrices of size $n ร n$, i.e. the set
\[\operatorname{Sym}(n) = \bigl\{p โ ๐ฝ^{n ร n}\ \big|\ p^{\mathrm{H}} = p \bigr\},\]
where $\cdot^{\mathrm{H}}$ denotes the Hermitian, i.e. complex conjugate transpose, and the field $๐ฝ โ \{ โ, โ\}$.
Though it is slightly redundant, usually the matrices are stored as $n ร n$ arrays.
Note that in this representation, the complex valued case has to have a real-valued diagonal, which is also reflected in the manifold_dimension.
Constructor
SymmetricMatrices(n::Int, field::AbstractNumbers=โ)Generate the manifold of $n ร n$ symmetric matrices.
ManifoldsBase.check_point โ Methodcheck_point(M::SymmetricMatrices{n,๐ฝ}, p; kwargs...)Check whether p is a valid manifold point on the SymmetricMatrices M, i.e. whether p is a symmetric matrix of size (n,n) with values from the corresponding AbstractNumbers ๐ฝ.
The tolerance for the symmetry of p can be set using kwargs....
ManifoldsBase.check_vector โ Methodcheck_vector(M::SymmetricMatrices{n,๐ฝ}, p, X; kwargs... )Check whether X is a tangent vector to manifold point p on the SymmetricMatrices M, i.e. X has to be a symmetric matrix of size (n,n) and its values have to be from the correct AbstractNumbers.
The tolerance for the symmetry of X can be set using kwargs....
ManifoldsBase.manifold_dimension โ Methodmanifold_dimension(M::SymmetricMatrices{n,๐ฝ})Return the dimension of the SymmetricMatrices matrix M over the number system ๐ฝ, i.e.
\[\begin{aligned} \dim \mathrm{Sym}(n,โ) &= \frac{n(n+1)}{2},\\ \dim \mathrm{Sym}(n,โ) &= 2\frac{n(n+1)}{2} - n = n^2, \end{aligned}\]
where the last $-n$ is due to the zero imaginary part for Hermitian matrices
ManifoldsBase.project โ Methodproject(M::SymmetricMatrices, p, X)Project the matrix X onto the tangent space at p on the SymmetricMatrices M,
\[\operatorname{proj}_p(X) = \frac{1}{2} \bigl( X + X^{\mathrm{H}} \bigr),\]
where $\cdot^{\mathrm{H}}$ denotes the Hermitian, i.e. complex conjugate transposed.
ManifoldsBase.project โ Methodproject(M::SymmetricMatrices, p)Projects p from the embedding onto the SymmetricMatrices M, i.e.
\[\operatorname{proj}_{\operatorname{Sym}(n)}(p) = \frac{1}{2} \bigl( p + p^{\mathrm{H}} \bigr),\]
where $\cdot^{\mathrm{H}}$ denotes the Hermitian, i.e. complex conjugate transposed.