Centered matrices
Manifolds.CenteredMatrices โ TypeCenteredMatrices{m,n,๐ฝ} <: AbstractDecoratorManifold{๐ฝ}The manifold of $m ร n$ real-valued or complex-valued matrices whose columns sum to zero, i.e.
\[\bigl\{ p โ ๐ฝ^{m ร n}\ \big|\ [1 โฆ 1] * p = [0 โฆ 0] \bigr\},\]
where $๐ฝ โ \{โ,โ\}$.
Constructor
CenteredMatrices(m, n[, field=โ])Generate the manifold of m-by-n (field-valued) matrices whose columns sum to zero.
ManifoldsBase.check_point โ Methodcheck_point(M::CenteredMatrices{m,n,๐ฝ}, p; kwargs...)Check whether the matrix is a valid point on the CenteredMatrices M, i.e. is an m-by-n matrix whose columns sum to zero.
The tolerance for the column sums of p can be set using kwargs....
ManifoldsBase.check_vector โ Methodcheck_vector(M::CenteredMatrices{m,n,๐ฝ}, p, X; kwargs... )Check whether X is a tangent vector to manifold point p on the CenteredMatrices M, i.e. that X is a matrix of size (m, n) whose columns sum to zero and its values are from the correct AbstractNumbers. The tolerance for the column sums of p and X can be set using kwargs....
ManifoldsBase.manifold_dimension โ Methodmanifold_dimension(M::CenteredMatrices{m,n,๐ฝ})Return the manifold dimension of the CenteredMatrices m-by-n matrix M over the number system ๐ฝ, i.e.
\[\dim(\mathcal M) = (m*n - n) \dim_โ ๐ฝ,\]
where $\dim_โ ๐ฝ$ is the real_dimension of ๐ฝ.
ManifoldsBase.project โ Methodproject(M::CenteredMatrices, p, X)Project the matrix X onto the tangent space at p on the CenteredMatrices M, i.e.
\[\operatorname{proj}_p(X) = X - \begin{bmatrix} 1\\ โฎ\\ 1 \end{bmatrix} * [c_1 \dots c_n],\]
where $c_i = \frac{1}{m}\sum_{j=1}^m x_{j,i}$ for $i = 1, \dots, n$.
ManifoldsBase.project โ Methodproject(M::CenteredMatrices, p)Projects p from the embedding onto the CenteredMatrices M, i.e.
\[\operatorname{proj}_{\mathcal M}(p) = p - \begin{bmatrix} 1\\ โฎ\\ 1 \end{bmatrix} * [c_1 \dots c_n],\]
where $c_i = \frac{1}{m}\sum_{j=1}^m p_{j,i}$ for $i = 1, \dots, n$.