Unit-norm symmetric matrices
Manifolds.SphereSymmetricMatrices โ TypeSphereSymmetricMatrices{n,๐ฝ} <: AbstractEmbeddedManifold{โ,TransparentIsometricEmbedding}The AbstractManifold consisting of the $n ร n$ symmetric matrices of unit Frobenius norm, i.e.
\[\mathcal{S}_{\text{sym}} :=\bigl\{p โ ๐ฝ^{n ร n}\ \big|\ p^{\mathrm{H}} = p, \lVert p \rVert = 1 \bigr\},\]
where $\cdot^{\mathrm{H}}$ denotes the Hermitian, i.e. complex conjugate transpose, and the field $๐ฝ โ \{ โ, โ\}$.
Constructor
SphereSymmetricMatrices(n[, field=โ])Generate the manifold of n-by-n symmetric matrices of unit Frobenius norm.
ManifoldsBase.check_point โ Methodcheck_point(M::SphereSymmetricMatrices{n,๐ฝ}, p; kwargs...)Check whether the matrix is a valid point on the SphereSymmetricMatrices M, i.e. is an n-by-n symmetric matrix of unit Frobenius norm.
The tolerance for the symmetry of p can be set using kwargs....
ManifoldsBase.check_vector โ Methodcheck_vector(M::SphereSymmetricMatrices{n,๐ฝ}, p, X; kwargs... )Check whether X is a tangent vector to manifold point p on the SphereSymmetricMatrices M, i.e. X has to be a symmetric matrix of size (n,n) of unit Frobenius norm.
The tolerance for the symmetry of p and X can be set using kwargs....
ManifoldsBase.manifold_dimension โ Methodmanifold_dimension(M::SphereSymmetricMatrices{n,๐ฝ})Return the manifold dimension of the SphereSymmetricMatrices n-by-n symmetric matrix M of unit Frobenius norm over the number system ๐ฝ, i.e.
\[\begin{aligned} \dim(\mathcal{S}_{\text{sym}})(n,โ) &= \frac{n(n+1)}{2} - 1,\\ \dim(\mathcal{S}_{\text{sym}})(n,โ) &= 2\frac{n(n+1)}{2} - n -1. \end{aligned}\]
ManifoldsBase.project โ Methodproject(M::SphereSymmetricMatrices, p, X)Project the matrix X onto the tangent space at p on the SphereSymmetricMatrices M, i.e.
\[\operatorname{proj}_p(X) = \frac{X + X^{\mathrm{H}}}{2} - โจp, \frac{X + X^{\mathrm{H}}}{2}โฉp,\]
where $\cdot^{\mathrm{H}}$ denotes the Hermitian, i.e. complex conjugate transposed.
ManifoldsBase.project โ Methodproject(M::SphereSymmetricMatrices, p)Projects p from the embedding onto the SphereSymmetricMatrices M, i.e.
\[\operatorname{proj}_{\mathcal{S}_{\text{sym}}}(p) = \frac{1}{2} \bigl( p + p^{\mathrm{H}} \bigr),\]
where $\cdot^{\mathrm{H}}$ denotes the Hermitian, i.e. complex conjugate transposed.