Steihaug-Toint truncated conjugate gradient method

Solve the constraint optimization problem on the tangent space

\[\begin{align*} \operatorname*{arg\,min}_{Y ∈ T_p\mathcal{M}}&\ m_p(Y) = f(p) + ⟨\operatorname{grad}f(p), Y⟩_p + \frac{1}{2} ⟨\mathcal{H}_p[Y], Y⟩_p\\ \text{such that}& \ \lVert Y \rVert_p ≤ Δ \end{align*}\]

on the tangent space $T_p\mathcal M$ of a Riemannian manifold $\mathcal M$ by using the Steihaug-Toint truncated conjugate-gradient (tCG) method, see [ABG06], Algorithm 2, and [CGT00]. Here $\mathcal H_p$ is either the Hessian $\operatorname{Hess} f(p)$ or a linear symmetric operator on the tangent space approximating the Hessian.

Interface

Manopt.truncated_conjugate_gradient_descentFunction
truncated_conjugate_gradient_descent(M, f, grad_f, p; kwargs...)
truncated_conjugate_gradient_descent(M, f, grad_f, p, X; kwargs...)
truncated_conjugate_gradient_descent(M, f, grad_f, Hess_f; kwargs...)
truncated_conjugate_gradient_descent(M, f, grad_f, Hess_f, p; kwargs...)
truncated_conjugate_gradient_descent(M, f, grad_f, Hess_f, p, X; kwargs...)
truncated_conjugate_gradient_descent(M, mho::ManifoldHessianObjective, p, X; kwargs...)
truncated_conjugate_gradient_descent(M, trmo::TrustRegionModelObjective, p, X; kwargs...)

solve the trust-region subproblem

\[\begin{align*} \operatorname*{arg\,min}_{Y ∈ T_p\mathcal{M}}&\ m_p(Y) = f(p) + ⟨\operatorname{grad}f(p), Y⟩_p + \frac{1}{2} ⟨\mathcal{H}_p[Y], Y⟩_p\\ \text{such that}& \ \lVert Y \rVert_p ≤ Δ \end{align*}\]

on a manifold M by using the Steihaug-Toint truncated conjugate-gradient (tCG) method. For a description of the algorithm and theorems offering convergence guarantees, see [ABG06, CGT00].

Input

  • M: a manifold $\mathcal M$
  • f: a cost function $f: \mathcal M → ℝ$ to minimize
  • grad_f: the gradient $\operatorname{grad}f: \mathcal M → T\mathcal M$ of F
  • Hess_f: (optional, cf. ApproxHessianFiniteDifference) the Hessian $\operatorname{Hess}f: T_p\mathcal M → T_p\mathcal M$, $X ↦ \operatorname{Hess}F(p)[X] = ∇_X\operatorname{grad}f(p)$
  • p: a point on the manifold $p ∈ \mathcal M$
  • X: an initial tangential vector $X ∈ T_p\mathcal M$

Instead of the three functions, you either provide a ManifoldHessianObjectivemho which is then used to build the trust region model, or a TrustRegionModelObjectivetrmo directly.

Optional

and the ones that are passed to decorate_state! for decorators.

Output

the obtained (approximate) minimizer $Y^*$, see get_solver_return for details

See also

trust_regions

source
Manopt.truncated_conjugate_gradient_descent!Function
truncated_conjugate_gradient_descent!(M, f, grad_f, Hess_f, p, X; kwargs...)
truncated_conjugate_gradient_descent!(M, f, grad_f, p, X; kwargs...)

solve the trust-region subproblem in place of X (and p).

Input

  • M: a manifold $\mathcal M$
  • f: a cost function $F: \mathcal M → ℝ$ to minimize
  • grad_f: the gradient $\operatorname{grad}f: \mathcal M → T\mathcal M$ of f
  • Hess_f: the Hessian $\operatorname{Hess}f(x): T_p\mathcal M → T_p\mathcal M$, $X ↦ \operatorname{Hess}f(p)[X]$
  • p: a point on the manifold $p ∈ \mathcal M$
  • X: an update tangential vector $X ∈ T_x\mathcal M$

For more details and all optional arguments, see truncated_conjugate_gradient_descent.

source

State

Manopt.TruncatedConjugateGradientStateType
TruncatedConjugateGradientState <: AbstractHessianSolverState

describe the Steihaug-Toint truncated conjugate-gradient method, with

Fields

a default value is given in brackets if a parameter can be left out in initialization.

  • Y: (zero_vector(M,p)) Current iterate, whose type is also used for the other, internal, tangent vector fields
  • stop: a StoppingCriterion.
  • X: the gradient $\operatorname{grad}f(p)$`
  • δ: the conjugate gradient search direction
  • θ: (1.0) 1+θ is the superlinear convergence target rate.
  • κ: (0.1) the linear convergence target rate.
  • trust_region_radius: (injectivity_radius(M)/4) the trust-region radius
  • residual: the gradient of the model $m(Y)$
  • randomize: (false)
  • project!: (copyto!) for numerical stability it is possible to project onto the tangent space after every iteration. By default this only copies instead.

Internal fields

  • , HY: temporary results of the Hessian applied to δ and Y, respectively.
  • δHδ, YPδ, δPδ, YPδ: temporary inner products with and preconditioned inner products.
  • z: the preconditioned residual
  • z_r: inner product of the residual and z

Constructor

TruncatedConjugateGradientState(TpM::TangentSpace, Y=rand(TpM); kwargs...)

See also

truncated_conjugate_gradient_descent, trust_regions

source

Stopping criteria

Manopt.StopWhenResidualIsReducedByFactorOrPowerType
StopWhenResidualIsReducedByFactorOrPower <: StoppingCriterion

A functor for testing if the norm of residual at the current iterate is reduced either by a power of 1+θ or by a factor κ compared to the norm of the initial residual. The criterion hence reads $\Vert r_k \Vert_p \leqq \Vert r_0 \Vert_p \min \bigl( \kappa, \Vert r_0 \Vert_p^θ \bigr)$.

Fields

  • κ: the reduction factor
  • θ: part of the reduction power
  • reason: stores a reason of stopping if the stopping criterion has one be reached, see get_reason.

Constructor

StopWhenResidualIsReducedByFactorOrPower(; κ=0.1, θ=1.0)

Initialize the StopWhenResidualIsReducedByFactorOrPower functor to indicate to stop after the norm of the current residual is lesser than either the norm of the initial residual to the power of 1+θ or the norm of the initial residual times κ.

See also

truncated_conjugate_gradient_descent, trust_regions

source
Manopt.StopWhenTrustRegionIsExceededType
StopWhenTrustRegionIsExceeded <: StoppingCriterion

A functor for testing if the norm of the next iterate in the Steihaug-Toint truncated conjugate gradient method is larger than the trust-region radius $θ \leq \Vert Y_{k}^{*} \Vert_p$ and to end the algorithm when the trust region has been left.

Fields

  • reason: stores a reason of stopping if the stopping criterion has been reached, see get_reason.

Constructor

StopWhenTrustRegionIsExceeded()

initialize the StopWhenTrustRegionIsExceeded functor to indicate to stop after the norm of the next iterate is greater than the trust-region radius.

See also

truncated_conjugate_gradient_descent, trust_regions

source
Manopt.StopWhenCurvatureIsNegativeType
StopWhenCurvatureIsNegative <: StoppingCriterion

A functor for testing if the curvature of the model is negative, $⟨δ_k, \operatorname{Hess}[F](\delta_k)⟩_p ≦ 0$. In this case, the model is not strictly convex, and the stepsize as computed does not yield a reduction of the model.

Fields

  • reason: stores a reason of stopping if the stopping criterion has been reached, see get_reason.

Constructor

StopWhenCurvatureIsNegative()

See also

truncated_conjugate_gradient_descent, trust_regions

source

Trust region model

Manopt.TrustRegionModelObjectiveType
TrustRegionModelObjective{O<:AbstractManifoldHessianObjective} <: AbstractManifoldSubObjective{O}

A trust region model of the form

\[ m(X) = f(p) + ⟨\operatorname{grad} f(p), X⟩_p + \frac{1}(2} ⟨\operatorname{Hess} f(p)[X], X⟩_p\]

Fields

Constructors

TrustRegionModelObjective(objective)

with either an AbstractManifoldHessianObjectiveobjective or an decorator containing such an objective

source

Technical details

The trust_regions solver requires the following functions of a manifold to be available

  • if you do not provide a trust_region_radius=, then injectivity_radius on the manifold M is required.
  • the norm as well, to stop when the norm of the gradient is small, but if you implemented inner, the norm is provided already.
  • A zero_vector!(M,X,p).
  • A `copyto!(M, q, p) and copy(M,p) for points.

Literature

[ABG06]
P.-A. Absil, C. Baker and K. Gallivan. Trust-Region Methods on Riemannian Manifolds. Foundations of Computational Mathematics 7, 303–330 (2006).
[CGT00]
A. R. Conn, N. I. Gould and P. L. Toint. Trust Region Methods (Society for Industrial and Applied Mathematics, 2000).