Exact penalty method

Manopt.exact_penalty_methodFunction
exact_penalty_method(M, F, gradF, p=rand(M); kwargs...)
exact_penalty_method(M, cmo::ConstrainedManifoldObjective, p=rand(M); kwargs...)

perform the exact penalty method (EPM) [LB19] The aim of the EPM is to find a solution of the constrained optimisation task

\[\begin{aligned} \min_{p ∈\mathcal{M}} &f(p)\\ \text{subject to } &g_i(p)\leq 0 \quad \text{ for } i= 1, …, m,\\ \quad &h_j(p)=0 \quad \text{ for } j=1,…,n, \end{aligned}\]

where M is a Riemannian manifold, and $f$, $\{g_i\}_{i=1}^m$ and $\{h_j\}_{j=1}^n$ are twice continuously differentiable functions from M to ℝ. For that a weighted $L_1$-penalty term for the violation of the constraints is added to the objective

\[f(x) + ρ\biggl( \sum_{i=1}^m \max\bigl\{0, g_i(x)\bigr\} + \sum_{j=1}^n \vert h_j(x)\vert\biggr),\]

where $ρ>0$ is the penalty parameter. Since this is non-smooth, a SmoothingTechnique with parameter u is applied, see the ExactPenaltyCost.

In every step $k$ of the exact penalty method, the smoothed objective is then minimized over all $x ∈\mathcal{M}$. Then, the accuracy tolerance $ϵ$ and the smoothing parameter $u$ are updated by setting

\[ϵ^{(k)}=\max\{ϵ_{\min}, θ_ϵ ϵ^{(k-1)}\},\]

where $ϵ_{\min}$ is the lowest value $ϵ$ is allowed to become and $θ_ϵ ∈ (0,1)$ is constant scaling factor, and

\[u^{(k)} = \max \{u_{\min}, \theta_u u^{(k-1)} \},\]

where $u_{\min}$ is the lowest value $u$ is allowed to become and $θ_u ∈ (0,1)$ is constant scaling factor.

Finally, the penalty parameter $ρ$ is updated as

\[ρ^{(k)} = \begin{cases} ρ^{(k-1)}/θ_ρ, & \text{if } \displaystyle \max_{j ∈ \mathcal{E},i ∈ \mathcal{I}} \Bigl\{ \vert h_j(x^{(k)}) \vert, g_i(x^{(k)})\Bigr\} \geq u^{(k-1)} \Bigr) ,\\ ρ^{(k-1)}, & \text{else,} \end{cases}\]

where $θ_ρ ∈ (0,1)$ is a constant scaling factor.

Input

  • M a manifold $\mathcal M$
  • f a cost function $f:\mathcal M→ℝ$ to minimize
  • grad_f the gradient of the cost function

Optional (if not called with the ConstrainedManifoldObjectivecmo)

  • g: (nothing) the inequality constraints
  • h: (nothing) the equality constraints
  • grad_g: (nothing) the gradient of the inequality constraints
  • grad_h: (nothing) the gradient of the equality constraints

Note that one of the pairs (g, grad_g) or (h, grad_h) has to be provided. Otherwise the problem is not constrained and you should consider using unconstrained solvers like quasi_Newton.

Optional

  • smoothing: (LogarithmicSumOfExponentials) SmoothingTechnique to use
  • ϵ: (1e–3) the accuracy tolerance
  • ϵ_exponent: (1/100) exponent of the ϵ update factor;
  • ϵ_min: (1e-6) the lower bound for the accuracy tolerance
  • u: (1e–1) the smoothing parameter and threshold for violation of the constraints
  • u_exponent: (1/100) exponent of the u update factor;
  • u_min: (1e-6) the lower bound for the smoothing parameter and threshold for violation of the constraints
  • ρ: (1.0) the penalty parameter
  • min_stepsize: (1e-10) the minimal step size
  • sub_cost: (ExactPenaltyCost(problem, ρ, u; smoothing=smoothing)) use this exact penalty cost, especially with the same numbers ρ,u as in the options for the sub problem
  • sub_grad: (ExactPenaltyGrad(problem, ρ, u; smoothing=smoothing)) use this exact penalty gradient, especially with the same numbers ρ,u as in the options for the sub problem
  • sub_kwargs: keyword arguments to decorate the sub options, for example debug, that automatically respects the main solvers debug options (like sub-sampling) as well
  • sub_stopping_criterion: (StopAfterIteration(200) |StopWhenGradientNormLess(ϵ) |StopWhenStepsizeLess(1e-10)) specify a stopping criterion for the subsolver.
  • sub_problem: (DefaultManoptProblem(M,ManifoldGradientObjective(sub_cost, sub_grad; evaluation=evaluation), provide a problem for the subsolver
  • sub_state: (QuasiNewtonState) using QuasiNewtonLimitedMemoryDirectionUpdate with InverseBFGS and sub_stopping_criterion as a stopping criterion. See also sub_kwargs.
  • stopping_criterion: (StopAfterIteration(300) | (StopWhenSmallerOrEqual(ϵ, ϵ_min) & StopWhenChangeLess(1e-10)) a functor inheriting from StoppingCriterion indicating when to stop.

Output

the obtained (approximate) minimizer $p^*$, see get_solver_return for details

source
Manopt.exact_penalty_method!Function
exact_penalty_method!(M, f, grad_f, p; kwargs...)
exact_penalty_method!(M, cmo::ConstrainedManifoldObjective, p; kwargs...)

perform the exact penalty method (EPM) performed in place of p.

For all options, see exact_penalty_method.

source

State

Manopt.ExactPenaltyMethodStateType
ExactPenaltyMethodState{P,T} <: AbstractManoptSolverState

Describes the exact penalty method, with

Fields

a default value is given in brackets if a parameter can be left out in initialization.

  • p: a set point on a manifold as starting point
  • sub_problem: an AbstractManoptProblem problem for the subsolver
  • sub_state: an AbstractManoptSolverState for the subsolver
  • ϵ: (1e–3) the accuracy tolerance
  • ϵ_min: (1e-6) the lower bound for the accuracy tolerance
  • u: (1e–1) the smoothing parameter and threshold for violation of the constraints
  • u_min: (1e-6) the lower bound for the smoothing parameter and threshold for violation of the constraints
  • ρ: (1.0) the penalty parameter
  • θ_ρ: (0.3) the scaling factor of the penalty parameter
  • stopping_criterion: (StopAfterIteration(300) | (StopWhenSmallerOrEqual(ϵ, ϵ_min) &StopWhenChangeLess(min_stepsize))) a functor inheriting from StoppingCriterion indicating when to stop.

Constructor

ExactPenaltyMethodState(M::AbstractManifold, p, sub_problem, sub_state; kwargs...)

construct an exact penalty options with the remaining previously mentioned fields as keywords using their provided defaults.

See also

exact_penalty_method

source

Helping functions

Manopt.ExactPenaltyCostType
ExactPenaltyCost{S, Pr, R}

Represent the cost of the exact penalty method based on a ConstrainedManifoldObjectiveP and a parameter $ρ$ given by

\[f(p) + ρ\Bigl( \sum_{i=0}^m \max\{0,g_i(p)\} + \sum_{j=0}^n \lvert h_j(p)\rvert \Bigr),\]

where an additional parameter $u$ is used as well as a smoothing technique, for example LogarithmicSumOfExponentials or LinearQuadraticHuber to obtain a smooth cost function. This struct is also a functor (M,p) -> v of the cost $v$.

Fields

  • ρ, u: as described in the mathematical formula, .
  • co: the original cost

Constructor

ExactPenaltyCost(co::ConstrainedManifoldObjective, ρ, u; smoothing=LinearQuadraticHuber())
source
Manopt.ExactPenaltyGradType
ExactPenaltyGrad{S, CO, R}

Represent the gradient of the ExactPenaltyCost based on a ConstrainedManifoldObjectiveco and a parameter $ρ$ and a smoothing technique, which uses an additional parameter $u$.

This struct is also a functor in both formats

  • (M, p) -> X to compute the gradient in allocating fashion.
  • (M, X, p) to compute the gradient in in-place fashion.

Fields

  • ρ, u as stated before
  • co the nonsmooth objective

Constructor

ExactPenaltyGradient(co::ConstrainedManifoldObjective, ρ, u; smoothing=LinearQuadraticHuber())
source
Manopt.LinearQuadraticHuberType
LinearQuadraticHuber <: SmoothingTechnique

Specify a smoothing based on $\max\{0,x\} ≈ \mathcal P(x,u)$ for some $u$, where

\[\mathcal P(x, u) = \begin{cases} 0 & \text{ if } x \leq 0,\\ \frac{x^2}{2u} & \text{ if } 0 \leq x \leq u,\\ x-\frac{u}{2} & \text{ if } x \geq u. \end{cases}\]

source
Manopt.LogarithmicSumOfExponentialsType
LogarithmicSumOfExponentials <: SmoothingTechnique

Specify a smoothing based on $\max\{a,b\} ≈ u \log(\mathrm{e}^{\frac{a}{u}}+\mathrm{e}^{\frac{b}{u}})$ for some $u$.

source

Technical details

The exact_penalty_method solver requires the following functions of a manifold to be available

The stopping criteria involves StopWhenChangeLess and StopWhenGradientNormLess which require

  • An inverse_retract!(M, X, p, q); it is recommended to set the default_inverse_retraction_method to a favourite retraction. If this default is set, a inverse_retraction_method= or inverse_retraction_method_dual= (for $\mathcal N$) does not have to be specified or the distance(M, p, q) for said default inverse retraction.
  • the norm as well, to stop when the norm of the gradient is small, but if you implemented inner, the norm is provided already.

Literature

[LB19]
C. Liu and N. Boumal. Simple algorithms for optimization on Riemannian manifolds with constraints. Applied Mathematics & Optimization (2019), arXiv:1091.10000.