Internal documentation
This page documents the internal types and methods of Manifolds.jl's that might be of use for writing your own manifold.
Functions
Manifolds.eigen_safe โ Functioneigen_safe(x)Compute the eigendecomposition of x. If x is a StaticMatrix, it is converted to a Matrix before the decomposition.
Manifolds.isnormal โ Functionisnormal(x; kwargs...) -> BoolCheck if the matrix or number x is normal, that is, if it commutes with its adjoint:
\[x x^\mathrm{H} = x^\mathrm{H} x.\]
By default, this is an equality check. Provide kwargs for isapprox to perform an approximate check.
Manifolds.log_safe โ Functionlog_safe(x)Compute the matrix logarithm of x. If x is a StaticMatrix, it is converted to a Matrix before computing the log.
Manifolds.log_safe! โ Functionlog_safe!(y, x)Compute the matrix logarithm of x. If the eltype of y is real, then the imaginary part of x is ignored, and a DomainError is raised if real(x) has no real logarithm.
Manifolds.mul!_safe โ Functionmul!_safe(Y, A, B) -> YCall mul! safely, that is, A and/or B are permitted to alias with Y.
Manifolds.nzsign โ Functionnzsign(z[, absz])Compute a modified sign(z) that is always nonzero, i.e. where
\[\operatorname(nzsign)(z) = \begin{cases} 1 & \text{if } z = 0\\ \frac{z}{|z|} & \text{otherwise} \end{cases}\]
Manifolds.realify โ Functionrealify(X::AbstractMatrix{T๐ฝ}, ๐ฝ::AbstractNumbers) -> Y::AbstractMatrix{<:Real}Given a matrix $X โ ๐ฝ^{n ร n}$, compute $Y โ โ^{m ร m}$, where $m = n \operatorname{dim}_๐ฝ$, and $\operatorname{dim}_๐ฝ$ is the real_dimension of the number field $๐ฝ$, using the map $ฯ \colon X โฆ Y$, that preserves the matrix product, so that for all $C,D โ ๐ฝ^{n ร n}$,
\[ฯ(C) ฯ(D) = ฯ(CD).\]
See realify! for an in-place version, and unrealify! to compute the inverse of $ฯ$.
Manifolds.realify! โ Functionrealify!(Y::AbstractMatrix{<:Real}, X::AbstractMatrix{T๐ฝ}, ๐ฝ::AbstractNumbers)In-place version of realify.
realify!(Y::AbstractMatrix{<:Real}, X::AbstractMatrix{<:Complex}, ::typeof(โ))Given a complex matrix $X = A + iB โ โ^{n ร n}$, compute its realified matrix $Y โ โ^{2n ร 2n}$, written where
\[Y = \begin{pmatrix}A & -B \\ B & A \end{pmatrix}.\]
Manifolds.select_from_tuple โ Functionselect_from_tuple(t::NTuple{N, Any}, positions::Val{P})Selects elements of tuple t at positions specified by the second argument. For example select_from_tuple(("a", "b", "c"), Val((3, 1, 1))) returns ("c", "a", "a").
Manifolds.symmetrize โ Functionsymmetrize(X)Given a quare matrix X compute 1/2 .* (X' + X).
Manifolds.symmetrize! โ Functionsymmetrize!(Y, X)Given a quare matrix X compute 1/2 .* (X' + X) in place of Y
Manifolds.unrealify! โ Functionunrealify!(X::AbstractMatrix{T๐ฝ}, Y::AbstractMatrix{<:Real}, ๐ฝ::AbstractNumbers[, n])Given a real matrix $Y โ โ^{m ร m}$, where $m = n \operatorname{dim}_๐ฝ$, and $\operatorname{dim}_๐ฝ$ is the real_dimension of the number field $๐ฝ$, compute in-place its equivalent matrix $X โ ๐ฝ^{n ร n}$. Note that this function does not check that $Y$ has a valid structure to be un-realified.
See realify! for the inverse of this function.
Manifolds.usinc โ Functionusinc(ฮธ::Real)Unnormalized version of sinc function, i.e. $\operatorname{usinc}(ฮธ) = \frac{\sin(ฮธ)}{ฮธ}$. This is equivalent to sinc(ฮธ/ฯ).
Manifolds.usinc_from_cos โ Functionusinc_from_cos(x::Real)Unnormalized version of sinc function, i.e. $\operatorname{usinc}(ฮธ) = \frac{\sin(ฮธ)}{ฮธ}$, computed from $x = cos(ฮธ)$.
Manifolds.vec2skew! โ Functionvec2skew!(X, v, k)create a skew symmetric matrix inplace in X of size $k\times k$ from a vector v, for example for v=[1,2,3] and k=3 this yields
[ 0 1 2;
-1 0 3;
-2 -3 0
]Manifolds.ziptuples โ Functionziptuples(a, b[, c[, d[, e]]])Zips tuples a, b, and remaining in a fast, type-stable way. If they have different lengths, the result is trimmed to the length of the shorter tuple.