Skew-symmetric matrices
Manifolds.SkewSymmetricMatrices โ TypeSkewSymmetricMatrices{n,๐ฝ} <: AbstractEmbeddedManifold{๐ฝ,TransparentIsometricEmbedding}The Manifold $ \operatorname{SkewSym}(n)$ consisting of the real- or complex-valued skew-symmetric matrices of size $n ร n$, i.e. the set
where $\cdot^{\mathrm{H}}$ denotes the Hermitian, i.e. complex conjugate transpose, and the field $๐ฝ โ \{ โ, โ\}$.
Though it is slightly redundant, usually the matrices are stored as $n ร n$ arrays.
Note that in this representation, the (real-valued part of) the diagonal has to be zero, which is also reflected in the manifold_dimension.
Constructor
SkewSymmetricMatrices(n::Int, field::AbstractNumbers=โ)Generate the manifold of $n ร n$ symmetric matrices.
ManifoldsBase.check_manifold_point โ Methodcheck_manifold_point(M::SkewSymmetricMatrices{n,๐ฝ}, p; kwargs...)Check whether p is a valid manifold point on the SkewSymmetricMatrices M, i.e. whether p is a skew-symmetric matrix of size (n,n) with values from the corresponding AbstractNumbers ๐ฝ.
The tolerance for the skew-symmetry of p can be set using kwargs....
ManifoldsBase.check_tangent_vector โ Methodcheck_tangent_vector(M::SkewSymmetricMatrices{n,๐ฝ}, p, X; check_base_point = true, kwargs... )Check whether X is a tangent vector to manifold point p on the SkewSymmetricMatrices M, i.e. X has to be a skew-symmetric matrix of size (n,n) and its values have to be from the correct AbstractNumbers. The optional parameter check_base_point indicates, whether to call check_manifold_point for p. The tolerance for the skew-symmetry of p and X can be set using kwargs....
ManifoldsBase.manifold_dimension โ Methodmanifold_dimension(M::SkewSymmetricMatrices{n,๐ฝ})Return the dimension of the SkewSymmetricMatrices matrix M over the number system ๐ฝ, i.e.
where the last $n$ is due to an imaginary diagonal that is allowed $\dim_โ ๐ฝ$ is the real_dimension of ๐ฝ.
ManifoldsBase.project โ Methodproject(M::SkewSymmetricMatrices, p, X)Project the matrix X onto the tangent space at p on the SkewSymmetricMatrices M,
where $\cdot^{\mathrm{H}}$ denotes the Hermitian, i.e. complex conjugate transposed.
ManifoldsBase.project โ Methodproject(M::SkewSymmetricMatrices, p)Projects p from the embedding onto the SkewSymmetricMatrices M, i.e.
where $\cdot^{\mathrm{H}}$ denotes the Hermitian, i.e. complex conjugate transposed.