# The probability simplex

Manifolds.ProbabilitySimplexType
ProbabilitySimplex{n} <: AbstractEmbeddedManifold{ℝ,DefaultEmbeddingType}

The (relative interior of) the probability simplex is the set

$Δ^n := \biggl\{ p ∈ ℝ^{n+1}\ \big|\ p_i > 0 \text{ for all } i=1,…,n+1, \text{ and } ⟨\mathbb{1},p⟩ = \sum_{i=1}^{n+1} p_i = 1\biggr\},$

where $\mathbb{1}=(1,…,1)^{\mathrm{T}}∈ ℝ^{n+1}$ denotes the vector containing only ones.

This set is also called the unit simplex or standard simplex.

The tangent space is given by

$T_pΔ^n = \biggl\{ X ∈ ℝ^{n+1}\ \big|\ ⟨\mathbb{1},X⟩ = \sum_{i=1}^{n+1} X_i = 0 \biggr\}$

The manifold is implemented assuming the Fisher-Rao metric for the multinomial distribution, which is equivalent to the induced metric from isometrically embedding the probability simplex in the $n$-sphere of radius 2. The corresponding diffeomorphism $\varphi: \mathbb Δ^n → \mathcal N$, where $\mathcal N \subset 2𝕊^n$ is given by $\varphi(p) = 2\sqrt{p}$.

This implementation follows the notation in [ÅströmPetraSchmitzerSchnörr2017].

source
Base.expMethod
exp(M::ProbabilitySimplex,p,X)

Compute the exponential map on the probability simplex.

$\exp_pX = \frac{1}{2}\Bigl(p+\frac{X_p^2}{\lVert X_p \rVert^2}\Bigr) + \frac{1}{2}\Bigl(p - \frac{X_p^2}{\lVert X_p \rVert^2}\Bigr)\cos(\lVert X_p\rVert) + \frac{1}{\lVert X_p \rVert}\sqrt{p}\sin(\lVert X_p\rVert),$

where $X_p = \frac{X}{\sqrt{p}}$, with its division meant elementwise, as well as for the operations $X_p^2$ and $\sqrt{p}$.

source
Base.logMethod
log(M::ProbabilitySimplex, p, q)

Compute the logarithmic map of p and q on the ProbabilitySimplex M.

$\log_pq = \frac{d_{Δ^n}(p,q)}{\sqrt{1-⟨\sqrt{p},\sqrt{q}⟩}}(\sqrt{pq} - ⟨\sqrt{p},\sqrt{q}⟩p),$

where $pq$ and $\sqrt{p}$ is meant elementwise.

source
ManifoldsBase.check_tangent_vectorMethod
check_tangent_vector(M::ProbabilitySimplex, p, X; check_base_point = true, kwargs... )

Check whether X is a tangent vector to p on the ProbabilitySimplex M, i.e. after check_manifold_point(M,p), X has to be of same dimension as p and its elements have to sum to one. The optional parameter check_base_point indicates, whether to call check_manifold_point for p or not. The tolerance for the last test can be set using the kwargs....

source
ManifoldsBase.innerMethod
inner(M::ProbabilitySimplex,p,X,Y)

Compute the inner product of two tangent vectors X, Y from the tangent space $T_pΔ^n$ at p. The formula reads

$g_p(X,Y) = \sum_{i=1}^{n+1}\frac{X_iY_i}{p_i}$
source
ManifoldsBase.inverse_retractMethod
inverse_retract(M::ProbabilitySimplex, p, q, ::SoftmaxInverseRetraction)

Compute a first order approximation by projection. The formula reads

$\operatorname{retr}^{-1}_p q = \bigl( I_{n+1} - \frac{1}{n}\mathbb{1}^{n+1,n+1} \bigr)(\log(q)-\log(p))$

where $\mathbb{1}^{m,n}$ is the size (m,n) matrix containing ones, and $\log$ is applied elementwise.

source
ManifoldsBase.retractMethod
retract(M::ProbabilitySimplex, p, X, ::SoftmaxRetraction)

Compute a first order approximation by applying the softmax function. The formula reads

$\operatorname{retr}_p X = \frac{p\mathrm{e}^X}{⟨p,\mathrm{e}^X⟩},$

where multiplication, exponentiation and division are meant elementwise.

source
Manifolds.FisherRaoMetricType
FisherRaoMetric <: Metric

The Fisher-Rao metric or Fisher information metric is a particular Riemannian metric which can be defined on a smooth statistical manifold, i.e., a smooth manifold whose points are probability measures defined on a common probability space.

See for example the ProbabilitySimplex.

source