Invertible matrices
Manifolds.InvertibleMatrices โ TypeInvertibleMatrices{๐ฝ,T} <: AbstractDecoratorManifold{๐ฝ}The AbstractManifold consisting of the real- or complex-valued invertible matrices, that is the set
\[\bigl\{p โ ๐ฝ^{nรn}\ \big|\ \det(p) \neq 0 \bigr\},\]
where the field $๐ฝ โ \{ โ, โ\}$.
Constructor
InvertibleMatrices(n::Int, field::AbstractNumbers=โ)Generate the manifold of $nรn$ invertible matrices.
Base.rand โ MethodRandom.rand(M::InvertibleMatrices; vector_at=nothing, kwargs...)If vector_at is nothing, return a random point on the InvertibleMatrices manifold M by using rand in the embedding.
If vector_at is not nothing, return a random tangent vector from the tangent space of the point vector_at on the InvertibleMatrices by using by using rand in the embedding.
ManifoldsBase.Weingarten โ MethodY = Weingarten(M::InvertibleMatrices, p, X, V)
Weingarten!(M::InvertibleMatrices, Y, p, X, V)Compute the Weingarten map $\mathcal W_p$ at p on the InvertibleMatrices M with respect to the tangent vector $X \in T_p\mathcal M$ and the normal vector $V \in N_p\mathcal M$.
Since this a flat space by itself, the result is always the zero tangent vector.
ManifoldsBase.check_point โ Methodcheck_point(M::InvertibleMatrices{n,๐ฝ}, p; kwargs...)Check whether p is a valid manifold point on the InvertibleMatrices M, i.e. whether p is an invertible matrix of size (n,n) with values from the corresponding AbstractNumbers ๐ฝ.
ManifoldsBase.check_vector โ Methodcheck_vector(M::InvertibleMatrices{n,๐ฝ}, p, X; kwargs... )Check whether X is a tangent vector to manifold point p on the InvertibleMatrices M, which are all matrices of size $nรn$ its values have to be from the correct AbstractNumbers.
ManifoldsBase.is_flat โ Methodis_flat(::InvertibleMatrices)Return true. InvertibleMatrices is a flat manifold.
ManifoldsBase.manifold_dimension โ Methodmanifold_dimension(M::InvertibleMatrices{n,๐ฝ})Return the dimension of the InvertibleMatrices matrix M over the number system ๐ฝ, which is the same dimension as its embedding, the Euclidean(n, n; field=๐ฝ).