Flag manifold
Manifolds.Flag โ Type
Flag{T,d} <: AbstractDecoratorManifold{โ}Flag manifold of $d$ subspaces of $โ^N$ [YWL21]. By default the manifold uses the Stiefel coordinates representation, embedding it in the Stiefel manifold. The other available representation is an embedding in OrthogonalMatrices. It can be utilized using OrthogonalPoint and OrthogonalTangentVector wrappers.
Tangent space is represented in the block-skew-symmetric form.
Constructor
Flag(N, n1, n2, ..., nd; parameter::Symbol=:type)Generate the manifold $\operatorname{Flag}(n_1, n_2, ..., n_d; N)$ of subspaces
\[๐_1 โ ๐_2 โ โฏ โ V_d, \quad \operatorname{dim}(๐_i) = n_i\]
where $๐_i$ for $i โ 1, 2, โฆ, d$ are subspaces of $โ^N$ of dimension $\operatorname{dim} ๐_i = n_i$.
parameter: whether a type parameter should be used to store n. By default size is stored in type. Value can either be :field or :type.
Manifolds.OrthogonalPoint โ Type
Manifolds.OrthogonalTangentVector โ Type
Manifolds.ZeroTuple โ Type
Base.convert โ Method
Base.convert โ Method
Base.convert โ Method
Base.convert โ Method
ManifoldsBase.get_embedding โ Method
ManifoldsBase.injectivity_radius โ Method
ManifoldsBase.manifold_dimension โ Method
manifold_dimension(M::Flag)Return dimension of flag manifold $\operatorname{Flag}(n_1, n_2, ..., n_d; N)$. The formula reads $\sum_{i=1}^d (n_i-n_{i-1})(N-n_i)$.
sourceThe flag manifold represented as points on the Stiefel manifold
ManifoldsBase.check_vector โ Method
check_vector(M::Flag, p::AbstractMatrix, X::AbstractMatrix; kwargs... )Check whether X is a tangent vector to point p on the Flag manifold M $\operatorname{Flag}(n_1, n_2, ..., n_d; N)$ in the Stiefel representation, i.e. that X is a matrix of the form
\[X = \begin{bmatrix} 0 & B_{1,2} & โฏ & B_{1,d} \\ -B_{1,2}^\mathrm{T} & 0 & โฏ & B_{2,d} \\ \vdots & \vdots & โฑ & \vdots \\ -B_{1,d}^\mathrm{T} & -B_{2,d}^\mathrm{T} & โฏ & 0 \\ -B_{1,d+1}^\mathrm{T} & -B_{2,d+1}^\mathrm{T} & โฏ & -B_{d,d+1}^\mathrm{T} \end{bmatrix}\]
where $B_{i,j} โ โ^{(n_i - n_{i-1}) ร (n_j - n_{j-1})}$, for $1 โค i < j โค d+1$.
sourceManifoldsBase.default_inverse_retraction_method โ Method
default_inverse_retraction_method(M::Flag)Return PolarInverseRetraction as the default inverse retraction for the Flag manifold.
ManifoldsBase.default_retraction_method โ Method
default_retraction_method(M::Flag)Return PolarRetraction as the default retraction for the Flag manifold.
ManifoldsBase.default_vector_transport_method โ Method
default_vector_transport_method(M::Flag)Return the ProjectionTransport as the default vector transport method for the Flag manifold.
ManifoldsBase.inverse_retract โ Method
inverse_retract(M::Flag, p, q, ::PolarInverseRetraction)Compute the inverse retraction for the PolarRetraction, on the Flag manifold M.
ManifoldsBase.project โ Method
project(::Flag, p, X)Project vector X in the Euclidean embedding to the tangent space at point p on Flag manifold. The formula reads [YWL21]:
\[Y_i = X_i - (p_i p_i^{\mathrm{T}}) X_i + \sum_{j \neq i} p_j X_j^{\mathrm{T}} p_i\]
for $i$ from 1 to $d$ where the resulting vector is $Y = [Y_1, Y_2, โฆ, Y_d]$ and $X = [X_1, X_2, โฆ, X_d]$, $p = [p_1, p_2, โฆ, p_d]$ are decompositions into basis vector matrices for consecutive subspaces of the flag.
sourceManifoldsBase.retract โ Method
retract(M::Flag, p, X, ::PolarRetraction)Compute the SVD-based retraction PolarRetraction on the Flag M. With $USV = p + X$ the retraction reads
\[\operatorname{retr}_p X = UV^\mathrm{H},\]
where $\cdot^{\mathrm{H}}$ denotes the complex conjugate transposed or Hermitian.
sourceThe flag manifold represented as orthogonal matrices
ManifoldsBase.check_vector โ Method
check_vector(M::Flag, p::OrthogonalPoint, X::OrthogonalTangentVector; kwargs... )Check whether X is a tangent vector to point p on the Flag manifold M $\operatorname{Flag}(n_1, n_2, ..., n_d; N)$ in the orthogonal matrix representation, i.e. that X is block-skew-symmetric with zero diagonal:
\[X = \begin{bmatrix} 0 & B_{1,2} & โฏ & B_{1,d+1} \\ -B_{1,2}^\mathrm{T} & 0 & โฏ & B_{2,d+1} \\ \vdots & \vdots & โฑ & \vdots \\ -B_{1,d+1}^\mathrm{T} & -B_{2,d+1}^\mathrm{T} & โฏ & 0 \end{bmatrix}\]
where $B_{i,j} โ โ^{(n_i - n_{i-1}) ร (n_j - n_{j-1})}$, for $1 โค i < j โค d+1$.
sourceManifoldsBase.get_embedding โ Method
get_embedding(M::Flag, p::OrthogonalPoint)Get embedding of Flag manifold M, i.e. the manifold OrthogonalMatrices.
ManifoldsBase.project โ Method
project(M::Flag, p::OrthogonalPoint, X::OrthogonalTangentVector)Project vector X to tangent space at point p from Flag manifold M $\operatorname{Flag}(n_1, n_2, ..., n_d; N)$, in the orthogonal matrix representation. It works by first projecting X to the space of SkewHermitianMatrices and then setting diagonal blocks to 0:
\[X = \begin{bmatrix} 0 & B_{1,2} & โฏ & B_{1,d+1} \\ -B_{1,2}^\mathrm{T} & 0 & โฏ & B_{2,d+1} \\ \vdots & \vdots & โฑ & \vdots \\ -B_{1,d+1}^\mathrm{T} & -B_{2,d+1}^\mathrm{T} & โฏ & 0 \end{bmatrix}\]
where $B_{i,j} โ โ^{(n_i - n_{i-1}) ร (n_j - n_{j-1})}$, for $1 โค i < j โค d+1$.
source