Invertible matrices

Manifolds.InvertibleMatrices โ€” Type
InvertibleMatrices{๐”ฝ,T} <: AbstractDecoratorManifold{๐”ฝ}

The AbstractManifold consisting of the real- or complex-valued invertible matrices, that is the set

\[\bigl\{p โˆˆ ๐”ฝ^{nร—n}\ \big|\ \det(p) \neq 0 \bigr\},\]

where the field $๐”ฝ โˆˆ \{ โ„, โ„‚\}$.

Constructor

InvertibleMatrices(n::Int, field::AbstractNumbers=โ„)

Generate the manifold of $nร—n$ invertible matrices.

source
Base.rand โ€” Method
Random.rand(M::InvertibleMatrices; vector_at=nothing, kwargs...)

If vector_at is nothing, return a random point on the InvertibleMatrices manifold M by using rand in the embedding.

If vector_at is not nothing, return a random tangent vector from the tangent space of the point vector_at on the InvertibleMatrices by using by using rand in the embedding.

source
ManifoldsBase.Weingarten โ€” Method
Y = Weingarten(M::InvertibleMatrices, p, X, V)
Weingarten!(M::InvertibleMatrices, Y, p, X, V)

Compute the Weingarten map $\mathcal W_p$ at p on the InvertibleMatrices M with respect to the tangent vector $X \in T_p\mathcal M$ and the normal vector $V \in N_p\mathcal M$.

Since this a flat space by itself, the result is always the zero tangent vector.

source