Invertible matrices
Manifolds.InvertibleMatrices
โ TypeInvertibleMatrices{๐ฝ,T} <: AbstractDecoratorManifold{๐ฝ}
The AbstractManifold
consisting of the real- or complex-valued invertible matrices, that is the set
\[\bigl\{p โ ๐ฝ^{nรn}\ \big|\ \det(p) \neq 0 \bigr\},\]
where the field $๐ฝ โ \{ โ, โ\}$.
Constructor
InvertibleMatrices(n::Int, field::AbstractNumbers=โ)
Generate the manifold of $nรn$ invertible matrices.
Base.rand
โ MethodRandom.rand(M::InvertibleMatrices; vector_at=nothing, kwargs...)
If vector_at
is nothing
, return a random point on the InvertibleMatrices
manifold M
by using rand
in the embedding.
If vector_at
is not nothing
, return a random tangent vector from the tangent space of the point vector_at
on the InvertibleMatrices
by using by using rand
in the embedding.
ManifoldsBase.Weingarten
โ MethodY = Weingarten(M::InvertibleMatrices, p, X, V)
Weingarten!(M::InvertibleMatrices, Y, p, X, V)
Compute the Weingarten map $\mathcal W_p$ at p
on the InvertibleMatrices
M
with respect to the tangent vector $X \in T_p\mathcal M$ and the normal vector $V \in N_p\mathcal M$.
Since this a flat space by itself, the result is always the zero tangent vector.
ManifoldsBase.check_point
โ Methodcheck_point(M::InvertibleMatrices{n,๐ฝ}, p; kwargs...)
Check whether p
is a valid manifold point on the InvertibleMatrices
M
, i.e. whether p
is an invertible matrix of size (n,n)
with values from the corresponding AbstractNumbers
๐ฝ
.
ManifoldsBase.check_vector
โ Methodcheck_vector(M::InvertibleMatrices{n,๐ฝ}, p, X; kwargs... )
Check whether X
is a tangent vector to manifold point p
on the InvertibleMatrices
M
, which are all matrices of size $nรn$ its values have to be from the correct AbstractNumbers
.
ManifoldsBase.is_flat
โ Methodis_flat(::InvertibleMatrices)
Return true. InvertibleMatrices
is a flat manifold.
ManifoldsBase.manifold_dimension
โ Methodmanifold_dimension(M::InvertibleMatrices{n,๐ฝ})
Return the dimension of the InvertibleMatrices
matrix M
over the number system ๐ฝ
, which is the same dimension as its embedding, the Euclidean
(n, n; field=๐ฝ)
.