Euclidean space
The Euclidean space $โ^n$ is a simple model space, since it has curvature constantly zero everywhere; hence, nearly all operations simplify. The easiest way to generate an Euclidean space is to use a field, i.e. AbstractNumbers, e.g. to create the $โ^n$ or $โ^{nรn}$ you can simply type M = โ^n or โ^(n,n), respectively.
Manifolds.Euclidean โ Type
Euclidean{T,๐ฝ} <: AbstractManifold{๐ฝ}Euclidean vector space.
Constructor
Euclidean(n)Generate the $n$-dimensional vector space $โ^n$.
Euclidean(nโ,nโ,...,nแตข; field=โ, parameter::Symbol = :field)
๐ฝ^(nโ,nโ,...,nแตข) = Euclidean(nโ,nโ,...,nแตข; field=๐ฝ)Generate the vector space of $k = n_1 โ
n_2 โ
โฆ โ
n_i$ values, i.e. the manifold $๐ฝ^{n_1, n_2, โฆ, n_i}$, $๐ฝ\in\{โ,โ\}$, whose elements are interpreted as $n_1 ร n_2 ร โฆ ร n_i$ arrays. For $i=2$ we obtain a matrix space. The default field=โ can also be set to field=โ. The dimension of this space is $k \dim_โ ๐ฝ$, where $\dim_โ ๐ฝ$ is the real_dimension of the field $๐ฝ$.
parameter: whether a type parameter should be used to store n. By default size is stored in type. Value can either be :field or :type.
Euclidean(; field=โ)Generate the 1D Euclidean manifold for an โ-, โ-valued real- or complex-valued immutable values (in contrast to 1-element arrays from the constructor above).
LinearAlgebra.norm โ Function
Manifolds.manifold_volume โ Method
Manifolds.volume_density โ Method
ManifoldsBase.Weingarten โ Method
Y = Weingarten(M::Euclidean, p, X, V)
Weingarten!(M::Euclidean, Y, p, X, V)Compute the Weingarten map $\mathcal W_p$ at p on the Euclidean M with respect to the tangent vector $X \in T_p\mathcal M$ and the normal vector $V \in N_p\mathcal M$.
Since this a flat space by itself, the result is always the zero tangent vector.
sourceManifoldsBase.distance โ Method
distance(M::Euclidean, p, q, r::Real=2)Compute the Euclidean distance between two points on the Euclidean manifold M, i.e. for vectors it's just the norm of the difference, for matrices and higher order arrays, the matrix and tensor Frobenius norm, respectively. Specifying further an rโ 2, other norms, like the 1-norm or the โ-norm can also be computed.
ManifoldsBase.embed โ Method
embed(M::Euclidean, p, X)Embed the tangent vector X at point p in M. Equivalent to an identity map.
ManifoldsBase.embed โ Method
ManifoldsBase.injectivity_radius โ Method
ManifoldsBase.inner โ Method
inner(M::Euclidean, p, X, Y)Compute the inner product on the Euclidean M, which is just the inner product on the real-valued or complex valued vector space of arrays (or tensors) of size $n_1 ร n_2 ร โฆ ร n_i$, i.e.
\[g_p(X,Y) = \sum_{k โ I} \overline{X}_{k} Y_{k},\]
where $I$ is the set of vectors $k โ โ^i$, such that for all
$i โค j โค i$ it holds $1 โค k_j โค n_j$ and $\overline{โ }$ denotes the complex conjugate.
For the special case of $i โค 2$, i.e. matrices and vectors, this simplifies to
\[g_p(X,Y) = \operatorname{tr}(X^{\mathrm{H}}Y),\]
where $โ ^{\mathrm{H}}$ denotes the Hermitian, i.e. complex conjugate transposed.
sourceManifoldsBase.is_flat โ Method
ManifoldsBase.manifold_dimension โ Method
manifold_dimension(M::Euclidean)Return the manifold dimension of the Euclidean M, i.e. the product of all array dimensions and the real_dimension of the underlying number system.