Matrices of determinant one

Manifolds.DeterminantOneMatrices โ€” Type
DeterminantOneMatrices{๐”ฝ,T} <: AbstractDecoratorManifold{๐”ฝ}

The AbstractManifold consisting of the real- or complex-valued (invertible) matrices od determinant one, that is the set

\[\bigl\{p โˆˆ ๐”ฝ^{nร—n}\ \big|\ \det(p) = 1 \bigr\},\]

where the field $๐”ฝ โˆˆ \{ โ„, โ„‚\}$.

Note that this is a subset of InvertibleMatrices, and a superset of any of the GeneralUnitaryMatrices

The tangent space at any point p is the set of matrices with trace 0.

Constructor

DeterminantOneMatrices(n::Int, field::AbstractNumbers=โ„)

Generate the manifold of $nร—n$ matrices of determinant one.

source
Base.rand โ€” Method
Random.rand(M::DeterminantOneMatrices; vector_at=nothing, kwargs...)

If vector_at is nothing, return a random point on the DeterminantOneMatrices manifold M by using rand in the embedding.

If vector_at is not nothing, return a random tangent vector from the tangent space of the point vector_at on the DeterminantOneMatrices by using by using rand in the embedding.

source
ManifoldsBase.check_point โ€” Method
check_point(M::DeterminantOneMatrices{n,๐”ฝ}, p; kwargs...)

Check whether p is a valid manifold point on the DeterminantOneMatrices M, i.e. whether p has a determinant of $1$.

The check is perfomed with isapprox and all keyword arguments are passed to this

source
ManifoldsBase.project โ€” Method
project(G::DeterminantOneMatrices, p, X)
project!(G::DeterminantOneMatrices, Y, p, X)

Orthogonally project $X โˆˆ ๐”ฝ^{nร—n}$ onto the tangent space of $p$ to the DeterminantOneMatrices.

This first changes the representation from X to the trace-zero component, i.e. computes Y = p \ X and then subtracts c = tr(Y) / n from all diagonal entries.

source
ManifoldsBase.project โ€” Method
project(G::DeterminantOneMatrices, p)
project!(G::DeterminantOneMatrices, q, p)

Project $p โˆˆ \mathrm{GL}(n, ๐”ฝ)$ to the DeterminantOneMatrices using the singular value decomposition of $p = U S V^\mathrm{H}$.

The formula for the projection is

\[\operatorname{proj}(p) = U S D V^\mathrm{H},\]

where

\[D_{ij} = ฮด_{ij} \begin{cases} 1 & \text{ if } i โ‰  n \\ \det(p)^{-1} & \text{ if } i = n \end{cases}.\]

The operation can be done in-place of q.

source