An interface for Lie group operations

LieGroups.AbstractGroupOperation β€” Type
AbstractGroupOperation

Represent a type of group operation for a AbstractLieGroup $\mathcal G$, that is a smooth binary operation $∘ : \mathcal G Γ— \mathcal G β†’ \mathcal G$ on elements of a Lie group $\mathcal G$.

source
LieGroups.Identity β€” Type
Identity{O<:AbstractGroupOperation}

Represent the group identity element $e ∈ \mathcal G$ on an AbstractLieGroup $\mathcal G$ with AbstractGroupOperation of type O.

Similar to the philosophy that points are agnostic of their group at hand, the identity does not store the group $\mathcal G$ it belongs to. However it depends on the type of the AbstractGroupOperation used.

See also identity_element on how to obtain the corresponding AbstractManifoldPoint or array representation.

Constructors

Identity(::AbstractLieGroup{𝔽,O}) where {𝔽,O<:AbstractGroupOperation}
Identity(o::AbstractGroupOperation)
Identity(::Type{AbstractGroupOperation})

create the identity of the corresponding subtype O<:AbstractGroupOperation

source

You can combine some specific group operations with one of several manifolds to form a Lie group. You can still define the corresponding functions generically for all groups with this group operation regardless of the manifold. The following sections collect these.

Additive group operation

LieGroups.AdditionGroupOperation β€” Type
AdditionGroupOperation <: AbstractGroupOperation

A group operation that is realised introducing defaults that fall back to + and - being overloaded, for example _compose(G::LieGroup{𝔽,AdditionGroupOperation}, a, b) = a + b

source
Base.exp β€” Method
exp(G::LieGroup{𝔽,AdditionGroupOperation}, X)
exp!(G::LieGroup{𝔽,AdditionGroupOperation}, g, X)

Compute the Lie group exponential on a LieGroup with an AdditionGroupOperation. This can be computed in-place of g.

Since e is just the zero-element with respect to the corresponding +, the formula reads $g=0+X=X$.

source
Base.inv β€” Method
inv(G::LieGroup{𝔽,AdditionGroupOperation}, g)
inv!(G::LieGroup{𝔽,AdditionGroupOperation}, h, g)

Compute the inverse group element $g^{-1}$, which for the AdditionGroupOperation simplifies to $-g$. This can be done in-place of h.

source
Base.log β€” Method
log(G::LieGroup{𝔽,AdditionGroupOperation}, g)
log!(G::LieGroup{𝔽,AdditionGroupOperation}, X, g)

Compute the Lie group logarithm on a LieGroup with an AdditionGroupOperation. This can be computed in-place of X.

Since e is just the zero-element with respect to the corresponding +, the formula reads $X=g-0=g$.

source
LieGroups.compose! β€” Method
compose(G::LieGroup{𝔽,AdditionGroupOperation}, g, h)
compose!(G::LieGroup{𝔽,AdditionGroupOperation}, k, g, h)

Compute the group operation composition of g and h with respect to the AdditionGroupOperation on G, which falls back to calling g+h, where + is assumed to be overloaded accordingly.

This can be computed in-place of k.

source
LieGroups.diff_conjugate! β€” Method
diff_conjugate(G::LieGroup{𝔽,AdditionGroupOperation}, g, h, X)
diff_conjugate!(G::LieGroup{𝔽,AdditionGroupOperation}, Y, g, h, X)

Compute the differential of the conjutage $c_g(h) = g∘h∘g^{-1} = g+h-g = h$, which simplifies for AdditionGroupOperation to $D(c_g(h))[X] = X$.

source
LieGroups.diff_conjugate β€” Method
diff_conjugate(G::LieGroup{𝔽,AdditionGroupOperation}, g, h, X)
diff_conjugate!(G::LieGroup{𝔽,AdditionGroupOperation}, Y, g, h, X)

Compute the differential of the conjutage $c_g(h) = g∘h∘g^{-1} = g+h-g = h$, which simplifies for AdditionGroupOperation to $D(c_g(h))[X] = X$.

source
LieGroups.diff_inv! β€” Method
diff_inv(G::LieGroup{𝔽,AdditionGroupOperation}, g, X)
diff_inv!(G::LieGroup{𝔽,AdditionGroupOperation}, Y, g, X)

Compute the differential of the inverse operation $ΞΉ_{\mathcal G}(g) = g^-1 = -g$, which simplifies for AdditionGroupOperation to $DΞΉ_{\mathcal G}(g)[X] = -X$

source
LieGroups.diff_inv β€” Method
diff_inv(G::LieGroup{𝔽,AdditionGroupOperation}, g, X)
diff_inv!(G::LieGroup{𝔽,AdditionGroupOperation}, Y, g, X)

Compute the differential of the inverse operation $ΞΉ_{\mathcal G}(g) = g^-1 = -g$, which simplifies for AdditionGroupOperation to $DΞΉ_{\mathcal G}(g)[X] = -X$

source
LieGroups.diff_left_compose! β€” Method
diff_left_compose(G::LieGroup{𝔽,AdditionGroupOperation}, g, h, X)
diff_left_compose!(G::LieGroup{𝔽,AdditionGroupOperation}, Y, g, h, X)

Compute the differential of the left group multiplication $λ_g(h) = g∘h$, which simplifies for AdditionGroupOperation to $Dλ_g(h)[X] = X$.

source
LieGroups.diff_left_compose β€” Method
diff_left_compose(G::LieGroup{𝔽,AdditionGroupOperation}, g, h, X)
diff_left_compose!(G::LieGroup{𝔽,AdditionGroupOperation}, Y, g, h, X)

Compute the differential of the left group multiplication $λ_g(h) = g∘h$, which simplifies for AdditionGroupOperation to $Dλ_g(h)[X] = X$.

source
LieGroups.diff_right_compose! β€” Method
diff_right_compose(G::LieGroup{𝔽,AdditionGroupOperation}, h, g, X)
diff_right_compose!(G::LieGroup{𝔽,AdditionGroupOperation}, Y, h, g, X)

Compute the differential of the right group multiplication $ρ_g(h) = h∘g$, which simplifies for AdditionGroupOperation to $Dρ_g(h)[X] = X$.

source
LieGroups.diff_right_compose β€” Method
diff_right_compose(G::LieGroup{𝔽,AdditionGroupOperation}, h, g, X)
diff_right_compose!(G::LieGroup{𝔽,AdditionGroupOperation}, Y, h, g, X)

Compute the differential of the right group multiplication $ρ_g(h) = h∘g$, which simplifies for AdditionGroupOperation to $Dρ_g(h)[X] = X$.

source
LieGroups.inv! β€” Method
inv(G::LieGroup{𝔽,AdditionGroupOperation}, g)
inv!(G::LieGroup{𝔽,AdditionGroupOperation}, h, g)

Compute the inverse group element $g^{-1}$, which for the AdditionGroupOperation simplifies to $-g$. This can be done in-place of h.

source
LieGroups.lie_bracket! β€” Method
lie_bracket!(𝔀::LieAlgebra{𝔽,AdditionGroupOperation}, X, Y)
lie_bracket!(𝔀::LieAlgebra{𝔽,AdditionGroupOperation}, Z, X, Y)

Compute the Lie bracket $[β‹…,β‹…]: \mathfrak gΓ—\mathfrak g β†’ \mathfrak g$, which for the for the AdditionGroupOperation simplifies to the corresponding zero_vector. The computation can be done in-place of Z.

source
LieGroups.lie_bracket β€” Method
lie_bracket!(𝔀::LieAlgebra{𝔽,AdditionGroupOperation}, X, Y)
lie_bracket!(𝔀::LieAlgebra{𝔽,AdditionGroupOperation}, Z, X, Y)

Compute the Lie bracket $[β‹…,β‹…]: \mathfrak gΓ—\mathfrak g β†’ \mathfrak g$, which for the for the AdditionGroupOperation simplifies to the corresponding zero_vector. The computation can be done in-place of Z.

source
Manifolds.compose β€” Method
compose(G::LieGroup{𝔽,AdditionGroupOperation}, g, h)
compose!(G::LieGroup{𝔽,AdditionGroupOperation}, k, g, h)

Compute the group operation composition of g and h with respect to the AdditionGroupOperation on G, which falls back to calling g+h, where + is assumed to be overloaded accordingly.

This can be computed in-place of k.

source
ManifoldsBase.exp! β€” Method
exp(G::LieGroup{𝔽,AdditionGroupOperation}, X)
exp!(G::LieGroup{𝔽,AdditionGroupOperation}, g, X)

Compute the Lie group exponential on a LieGroup with an AdditionGroupOperation. This can be computed in-place of g.

Since e is just the zero-element with respect to the corresponding +, the formula reads $g=0+X=X$.

source
ManifoldsBase.log! β€” Method
log(G::LieGroup{𝔽,AdditionGroupOperation}, g)
log!(G::LieGroup{𝔽,AdditionGroupOperation}, X, g)

Compute the Lie group logarithm on a LieGroup with an AdditionGroupOperation. This can be computed in-place of X.

Since e is just the zero-element with respect to the corresponding +, the formula reads $X=g-0=g$.

source

Multiplication group operation

LieGroups.AbstractMultiplicationGroupOperation β€” Type
AbstractMultiplicationGroupOperation <: AbstractGroupOperation

A group operation that is realised introducing defaults that fall back to * being overloaded, for example _compose(G::LieGroup{𝔽,<:AbstractMultiplicationGroupOperation}, a, b) = a * b

source
Base.inv β€” Method
inv(G::LieGroup{𝔽,<:AbstractMultiplicationGroupOperation}, g)
inv!(G::LieGroup{𝔽,<:AbstractMultiplicationGroupOperation}, h, g)

Compute the inverse group element $g^{-1}$, which for an AbstractMultiplicationGroupOperation simplifies to the multiplicative inverse $g^{-1}$. This can be done in-place of h.

source
LieGroups.compose! β€” Method
compose(G::LieGroup{𝔽,<:AbstractMultiplicationGroupOperation}, g, h)
compose!(G::LieGroup{𝔽,<:AbstractMultiplicationGroupOperation}, k, g, h)

Compute the group operation composition of g and h with respect to an AbstractMultiplicationGroupOperation on an LieGroup G, which falls back to calling g*h, where * is assumed to be overloaded accordingly.

This can be computed in-place of k.

source
LieGroups.diff_conjugate! β€” Method
diff_conjugate(G::LieGroup{𝔽,<:AbstractMultiplicationGroupOperation}, g, h, X)
diff_conjugate!(G::LieGroup{𝔽,<:AbstractMultiplicationGroupOperation}, Y, g, h, X)

Compute the differential of the conjugate $c_g(h) = g∘h∘g^{-1} = ghg^{-1}$, which simplifies for an AbstractMultiplicationGroupOperation to $D(c_g(h))[X] = gXg^{-1}$.

source
LieGroups.diff_conjugate β€” Method
diff_conjugate(G::LieGroup{𝔽,<:AbstractMultiplicationGroupOperation}, g, h, X)
diff_conjugate!(G::LieGroup{𝔽,<:AbstractMultiplicationGroupOperation}, Y, g, h, X)

Compute the differential of the conjugate $c_g(h) = g∘h∘g^{-1} = ghg^{-1}$, which simplifies for an AbstractMultiplicationGroupOperation to $D(c_g(h))[X] = gXg^{-1}$.

source
LieGroups.diff_inv! β€” Method
diff_inv(G::LieGroup{𝔽,<:AbstractMultiplicationGroupOperation}, g, X)
diff_inv!(G::LieGroup{𝔽,<:AbstractMultiplicationGroupOperation}, Y, g, X)

Compute the value of differential $DΞΉ_{\mathcal G}(g)[X]$ of matrix inversion $ΞΉ_{\mathcal G}(g) := g^{-1}$ at $X ∈ 𝔀$ in the LieAlgebra $𝔀$ of the LieGroup G.

The formula is given by

\[DΞΉ_{\mathcal G}(g)[X] = -g^{\mathrm{T}}Xg^{-1},\]

which stems from using the differential of the inverse from [Gil08] given by $D(g^{-1})[X] = -g^{-1}Xg^{-1}$ composed with the push forward of the left composition $DΞ»_\mathrm{e}(g)[X] = gX$ mapping from the Liea algebra into the tangent space at $g$, and its adjoint $D^*Ξ»_\mathrm{e}(g)[X] = g^{\mathrm{T}}X$. Then we get $g^{\mathrm{T}}(g^{-1}(gX)g^{-1})$ which simplifies to $-g^{\mathrm{T}}Xg^{-1}$ from above.

source
LieGroups.diff_inv β€” Method
diff_inv(G::LieGroup{𝔽,<:AbstractMultiplicationGroupOperation}, g, X)
diff_inv!(G::LieGroup{𝔽,<:AbstractMultiplicationGroupOperation}, Y, g, X)

Compute the value of differential $DΞΉ_{\mathcal G}(g)[X]$ of matrix inversion $ΞΉ_{\mathcal G}(g) := g^{-1}$ at $X ∈ 𝔀$ in the LieAlgebra $𝔀$ of the LieGroup G.

The formula is given by

\[DΞΉ_{\mathcal G}(g)[X] = -g^{\mathrm{T}}Xg^{-1},\]

which stems from using the differential of the inverse from [Gil08] given by $D(g^{-1})[X] = -g^{-1}Xg^{-1}$ composed with the push forward of the left composition $DΞ»_\mathrm{e}(g)[X] = gX$ mapping from the Liea algebra into the tangent space at $g$, and its adjoint $D^*Ξ»_\mathrm{e}(g)[X] = g^{\mathrm{T}}X$. Then we get $g^{\mathrm{T}}(g^{-1}(gX)g^{-1})$ which simplifies to $-g^{\mathrm{T}}Xg^{-1}$ from above.

source
LieGroups.diff_left_compose! β€” Method
diff_left_compose(G::LieGroup{𝔽,<:AbstractMultiplicationGroupOperation}, g, h, X)
diff_left_compose!(G::LieGroup{𝔽,<:AbstractMultiplicationGroupOperation}, Y, g, h, X)

Compute the differential of the left group multiplication $λ_g(h) = g∘h$, which simplifies for an AbstractMultiplicationGroupOperation to $Dλ_g(h)[X] = gX$.

source
LieGroups.diff_left_compose β€” Method
diff_left_compose(G::LieGroup{𝔽,<:AbstractMultiplicationGroupOperation}, g, h, X)
diff_left_compose!(G::LieGroup{𝔽,<:AbstractMultiplicationGroupOperation}, Y, g, h, X)

Compute the differential of the left group multiplication $λ_g(h) = g∘h$, which simplifies for an AbstractMultiplicationGroupOperation to $Dλ_g(h)[X] = gX$.

source
LieGroups.diff_right_compose! β€” Method
diff_right_compose(G::LieGroup{𝔽,<:AbstractMultiplicationGroupOperation}, h, g, X)
diff_right_compose!(G::LieGroup{𝔽,<:AbstractMultiplicationGroupOperation}, Y, h, g, X)

Compute the differential of the right group multiplication $ρ_g(h) = h∘g$, which simplifies for an AbstractMultiplicationGroupOperation to $Dρ_g(h)[X] = Xg$.

source
LieGroups.diff_right_compose β€” Method
diff_right_compose(G::LieGroup{𝔽,<:AbstractMultiplicationGroupOperation}, h, g, X)
diff_right_compose!(G::LieGroup{𝔽,<:AbstractMultiplicationGroupOperation}, Y, h, g, X)

Compute the differential of the right group multiplication $ρ_g(h) = h∘g$, which simplifies for an AbstractMultiplicationGroupOperation to $Dρ_g(h)[X] = Xg$.

source
LieGroups.inv! β€” Method
inv(G::LieGroup{𝔽,<:AbstractMultiplicationGroupOperation}, g)
inv!(G::LieGroup{𝔽,<:AbstractMultiplicationGroupOperation}, h, g)

Compute the inverse group element $g^{-1}$, which for an AbstractMultiplicationGroupOperation simplifies to the multiplicative inverse $g^{-1}$. This can be done in-place of h.

source
LieGroups.lie_bracket! β€” Method
lie_bracket(::LieAlgebra{𝔽,MatrixMultiplicationGroupOperation}, X, Y)
lie_bracket!(::LieAlgebra{𝔽,MatrixMultiplicationGroupOperation}, Z, X, Y)

Compute the Lie bracket $[β‹…,β‹…]: \mathfrak gΓ—\mathfrak g β†’ \mathfrak g$, which for the for the MatrixMultiplicationGroupOperation yields the commutator bracket

\[[X, Y] = XY-YX\]

The computation can be done in-place of Z.

source
LieGroups.lie_bracket β€” Method
lie_bracket(::LieAlgebra{𝔽,MatrixMultiplicationGroupOperation}, X, Y)
lie_bracket!(::LieAlgebra{𝔽,MatrixMultiplicationGroupOperation}, Z, X, Y)

Compute the Lie bracket $[β‹…,β‹…]: \mathfrak gΓ—\mathfrak g β†’ \mathfrak g$, which for the for the MatrixMultiplicationGroupOperation yields the commutator bracket

\[[X, Y] = XY-YX\]

The computation can be done in-place of Z.

source
Manifolds.compose β€” Method
compose(G::LieGroup{𝔽,<:AbstractMultiplicationGroupOperation}, g, h)
compose!(G::LieGroup{𝔽,<:AbstractMultiplicationGroupOperation}, k, g, h)

Compute the group operation composition of g and h with respect to an AbstractMultiplicationGroupOperation on an LieGroup G, which falls back to calling g*h, where * is assumed to be overloaded accordingly.

This can be computed in-place of k.

source

Abelian multiplication group operation

Since the commutativity of some Lie groups leads to a significant simplification of computations on those groups, the abelian multiplication group operation optimizes these cases. Additionally, it provides an interface for the abelian Lie groups. Some of these can are represented by isbits-types, which don't have mutating variants of the functions.

Base.exp β€” Method
exp(G::LieGroup{𝔽,<:AbelianMultiplicationGroupOperation}, X)
exp(G::LieGroup{𝔽,<:AbelianMultiplicationGroupOperation}, g, X)
exp!(G::LieGroup{𝔽,<:AbelianMultiplicationGroupOperation}, h, X)
exp!(G::LieGroup{𝔽,<:AbelianMultiplicationGroupOperation}, h, g, X)

Compute the Lie group exponential on a LieGroup at a point g or the Identity with an AbelianMultiplicationGroupOperation.

Due to differences in the representation of some abelian Lie groups, this method wraps a concrete implementation of a specific abelian LieGroup with inputs of type AbstractArray{<:Any,0} and supports in-place computation.

This can be computed in-place of h if h is mutable.

source
Base.inv β€” Method
inv(G::LieGroup{𝔽,<:AbstractMultiplicationGroupOperation}, g)
inv!(G::LieGroup{𝔽,<:AbstractMultiplicationGroupOperation}, h, g)

Compute the inverse group element $g^{-1}$, which for the AbelianMultiplicationGroupOperation simplifies for a scalar input to the ordinary scalar inverse $g^{-1}$.

Due to differences in the representation of some abelian Lie groups, this method wraps a concrete implementation of a specific abelian LieGroup with inputs of type AbstractArray{<:Any,0} and supports in-place computation.

This can be computed in-place of h if h is mutable.

source
Base.log β€” Method
log(G::LieGroup{𝔽,<:AbelianMultiplicationGroupOperation}, h)
log(G::LieGroup{𝔽,<:AbelianMultiplicationGroupOperation}, g, h)
log!(G::LieGroup{𝔽,<:AbeliantMultiplicationGroupOperation}, X, g)
log!(G::LieGroup{𝔽,<:AbeliantMultiplicationGroupOperation}, X, g, h)

Compute the Lie group logarithm on a LieGroup at a point g or the Identity with a concrete instance of AbelianMultiplicationGroupOperation.

Due to differences in the representation of some abelian Lie groups, this method wraps a concrete implementation of a specific abelian LieGroup with inputs of type AbstractArray{<:Any,0} and supports in-place computation.

This can be computed in-place of X if X is mutable.

source
LieGroups.diff_conjugate! β€” Method
diff_conjugate(G::LieGroup{𝔽,<:AbelianMultiplicationGroupOperation}, g, h, X)
diff_conjugate!(G::LieGroup{𝔽,<:AbelianMultiplicationGroupOperation}, Y, g, h, X)

Compute the differential of the conjugate $c_g(h) = g∘h∘g^{-1} = ghg^{-1}$, which simplifies for an AbelianMultiplicationGroupOperation to $D(c_g(h))[X] = X$.

This can be computed in-place of Y if Y is mutable.

source
LieGroups.diff_conjugate β€” Method
diff_conjugate(G::LieGroup{𝔽,<:AbelianMultiplicationGroupOperation}, g, h, X)
diff_conjugate!(G::LieGroup{𝔽,<:AbelianMultiplicationGroupOperation}, Y, g, h, X)

Compute the differential of the conjugate $c_g(h) = g∘h∘g^{-1} = ghg^{-1}$, which simplifies for an AbelianMultiplicationGroupOperation to $D(c_g(h))[X] = X$.

This can be computed in-place of Y if Y is mutable.

source
LieGroups.diff_inv! β€” Method
diff_inv(G::LieGroup{𝔽,<:AbelianMultiplicationGroupOperation}, g, X)
diff_inv!(G::LieGroup{𝔽,<:AbelianMultiplicationGroupOperation}, Y, g, X)

Compute the value of the differential $DΞΉ_{\mathcal G}(g)[X]$ of the inversion $ΞΉ_{\mathcal G}(g) := g^{-1}$ at $X ∈ 𝔀$ in the LieAlgebra $𝔀$ of the LieGroup G.

In the abelian case, the computation simplifies to

\[DΞΉ_{\mathcal G}(g)[X] = -gXg^{-1} = -X.\]

This can be computed in-place of Y if Y is mutable.

source
LieGroups.diff_left_compose! β€” Method
diff_left_compose(G::LieGroup{𝔽,<:AbelianMultiplicationGroupOperation}, g, h, X)
diff_left_compose!(G::LieGroup{𝔽,<:AbelianMultiplicationGroupOperation}, Y, g, h, X)

Compute the differential of the left group multiplication $λ_g(h) = g∘h$.

Due to differences in the representation of some abelian Lie groups, this method wraps a concrete implementation of a specific abelian LieGroup with inputs of type AbstractArray{<:Any,0} and supports in-place computation.

This can be computed in-place of Y if Y is mutable.

source
LieGroups.diff_left_compose β€” Method
diff_left_compose(G::LieGroup{𝔽,<:AbelianMultiplicationGroupOperation}, g, h, X)
diff_left_compose!(G::LieGroup{𝔽,<:AbelianMultiplicationGroupOperation}, Y, g, h, X)

Compute the differential of the left group multiplication $λ_g(h) = g∘h$.

Due to differences in the representation of some abelian Lie groups, this method wraps a concrete implementation of a specific abelian LieGroup with inputs of type AbstractArray{<:Any,0} and supports in-place computation.

This can be computed in-place of Y if Y is mutable.

source
LieGroups.diff_right_compose! β€” Method
diff_right_compose(G::LieGroup{𝔽,<:AbelianMultiplicationGroupOperation}, g, h, X)
diff_right_compose!(G::LieGroup{𝔽,<:AbelianMultiplicationGroupOperation}, Y, g, h, X)

Compute the differential of the right group multiplication $ρ_g(h) = h∘g$.

Due to differences in the representation of some abelian Lie groups, this method wraps a concrete implementation of a specific abelian LieGroup with inputs of type AbstractArray{<:Any,0} and supports in-place computation.

This can be computed in-place of Y if Y is mutable.

source
LieGroups.diff_right_compose β€” Method
diff_right_compose(G::LieGroup{𝔽,<:AbelianMultiplicationGroupOperation}, g, h, X)
diff_right_compose!(G::LieGroup{𝔽,<:AbelianMultiplicationGroupOperation}, Y, g, h, X)

Compute the differential of the right group multiplication $ρ_g(h) = h∘g$.

Due to differences in the representation of some abelian Lie groups, this method wraps a concrete implementation of a specific abelian LieGroup with inputs of type AbstractArray{<:Any,0} and supports in-place computation.

This can be computed in-place of Y if Y is mutable.

source
LieGroups.inv! β€” Method
inv(G::LieGroup{𝔽,<:AbstractMultiplicationGroupOperation}, g)
inv!(G::LieGroup{𝔽,<:AbstractMultiplicationGroupOperation}, h, g)

Compute the inverse group element $g^{-1}$, which for the AbelianMultiplicationGroupOperation simplifies for a scalar input to the ordinary scalar inverse $g^{-1}$.

Due to differences in the representation of some abelian Lie groups, this method wraps a concrete implementation of a specific abelian LieGroup with inputs of type AbstractArray{<:Any,0} and supports in-place computation.

This can be computed in-place of h if h is mutable.

source
LieGroups.lie_bracket! β€” Method
lie_bracket(::LieAlgebra{𝔽,AbelianMultiplicationGroupOperation}, X, Y)
lie_bracket!(::LieAlgebra{𝔽,AbelianMultiplicationGroupOperation}, Z, X, Y)

Compute the Lie bracket $[β‹…,β‹…]: \mathfrak gΓ—\mathfrak g β†’ \mathfrak g$, which for the for the AbelianMultiplicationGroupOperation yields the zero vector of the LieAlgebra due to commutativity.

\[[X, Y] = XY-YX = 0\]

The computation can be done in-place of Z if Z is mutable.

source
LieGroups.lie_bracket β€” Method
lie_bracket(::LieAlgebra{𝔽,AbelianMultiplicationGroupOperation}, X, Y)
lie_bracket!(::LieAlgebra{𝔽,AbelianMultiplicationGroupOperation}, Z, X, Y)

Compute the Lie bracket $[β‹…,β‹…]: \mathfrak gΓ—\mathfrak g β†’ \mathfrak g$, which for the for the AbelianMultiplicationGroupOperation yields the zero vector of the LieAlgebra due to commutativity.

\[[X, Y] = XY-YX = 0\]

The computation can be done in-place of Z if Z is mutable.

source
ManifoldsBase.exp! β€” Method
exp(G::LieGroup{𝔽,<:AbelianMultiplicationGroupOperation}, X)
exp(G::LieGroup{𝔽,<:AbelianMultiplicationGroupOperation}, g, X)
exp!(G::LieGroup{𝔽,<:AbelianMultiplicationGroupOperation}, h, X)
exp!(G::LieGroup{𝔽,<:AbelianMultiplicationGroupOperation}, h, g, X)

Compute the Lie group exponential on a LieGroup at a point g or the Identity with an AbelianMultiplicationGroupOperation.

Due to differences in the representation of some abelian Lie groups, this method wraps a concrete implementation of a specific abelian LieGroup with inputs of type AbstractArray{<:Any,0} and supports in-place computation.

This can be computed in-place of h if h is mutable.

source
ManifoldsBase.log! β€” Method
log(G::LieGroup{𝔽,<:AbelianMultiplicationGroupOperation}, h)
log(G::LieGroup{𝔽,<:AbelianMultiplicationGroupOperation}, g, h)
log!(G::LieGroup{𝔽,<:AbeliantMultiplicationGroupOperation}, X, g)
log!(G::LieGroup{𝔽,<:AbeliantMultiplicationGroupOperation}, X, g, h)

Compute the Lie group logarithm on a LieGroup at a point g or the Identity with a concrete instance of AbelianMultiplicationGroupOperation.

Due to differences in the representation of some abelian Lie groups, this method wraps a concrete implementation of a specific abelian LieGroup with inputs of type AbstractArray{<:Any,0} and supports in-place computation.

This can be computed in-place of X if X is mutable.

source

Literature

[Gil08]
M.Β B.Β Giles. Collected Matrix Derivative Results for Forward and Reverse Mode Algorithmic Differentiation. In: Advances in Automatic Differentiation, Lecture Notes in Computational Science and Engineering, edited by C.Β H.Β Bischof, H.Β M.Β BΓΌcker, P.Β Hovland, U.Β Naumann and J.Β Utke (Springer, Berlin, Heidelberg, 2008); pp.Β 35–44.