An interface for Lie group operations
LieGroups.AbstractGroupOperation β TypeAbstractGroupOperationRepresent a type of group operation for a AbstractLieGroup $\mathcal G$, that is a smooth binary operation $β : \mathcal G Γ \mathcal G β \mathcal G$ on elements of a Lie group $\mathcal G$.
LieGroups.Identity β TypeIdentity{O<:AbstractGroupOperation}Represent the group identity element $e β \mathcal G$ on an AbstractLieGroup $\mathcal G$ with AbstractGroupOperation of type O.
Similar to the philosophy that points are agnostic of their group at hand, the identity does not store the group $\mathcal G$ it belongs to. However it depends on the type of the AbstractGroupOperation used.
See also identity_element on how to obtain the corresponding AbstractManifoldPoint or array representation.
Constructors
Identity(::AbstractLieGroup{π½,O}) where {π½,O<:AbstractGroupOperation}
Identity(o::AbstractGroupOperation)
Identity(::Type{AbstractGroupOperation})create the identity of the corresponding subtype O<:AbstractGroupOperation
You can combine some specific group operations with one of several manifolds to form a Lie group. You can still define the corresponding functions generically for all groups with this group operation regardless of the manifold. The following sections collect these.
- an
AdditionGroupOperation - an
AbelianMultiplicationGroupOperationand - a
MatrixMultiplicationGroupOperation
Additive group operation
LieGroups.AdditionGroupOperation β TypeAdditionGroupOperation <: AbstractGroupOperationA group operation that is realised introducing defaults that fall back to + and - being overloaded, for example _compose(G::LieGroup{π½,AdditionGroupOperation}, a, b) = a + b
Base.exp β Methodexp(G::LieGroup{π½,AdditionGroupOperation}, X)
exp!(G::LieGroup{π½,AdditionGroupOperation}, g, X)Compute the Lie group exponential on a LieGroup with an AdditionGroupOperation. This can be computed in-place of g.
Since e is just the zero-element with respect to the corresponding +, the formula reads $g=0+X=X$.
Base.inv β Methodinv(G::LieGroup{π½,AdditionGroupOperation}, g)
inv!(G::LieGroup{π½,AdditionGroupOperation}, h, g)Compute the inverse group element $g^{-1}$, which for the AdditionGroupOperation simplifies to $-g$. This can be done in-place of h.
Base.log β Methodlog(G::LieGroup{π½,AdditionGroupOperation}, g)
log!(G::LieGroup{π½,AdditionGroupOperation}, X, g)Compute the Lie group logarithm on a LieGroup with an AdditionGroupOperation. This can be computed in-place of X.
Since e is just the zero-element with respect to the corresponding +, the formula reads $X=g-0=g$.
LieGroups.compose! β Methodcompose(G::LieGroup{π½,AdditionGroupOperation}, g, h)
compose!(G::LieGroup{π½,AdditionGroupOperation}, k, g, h)Compute the group operation composition of g and h with respect to the AdditionGroupOperation on G, which falls back to calling g+h, where + is assumed to be overloaded accordingly.
This can be computed in-place of k.
LieGroups.compose β Methodcompose(G::LieGroup{π½,AdditionGroupOperation}, g, h)
compose!(G::LieGroup{π½,AdditionGroupOperation}, k, g, h)Compute the group operation composition of g and h with respect to the AdditionGroupOperation on G, which falls back to calling g+h, where + is assumed to be overloaded accordingly.
This can be computed in-place of k.
LieGroups.diff_conjugate! β Methoddiff_conjugate(G::LieGroup{π½,AdditionGroupOperation}, g, h, X)
diff_conjugate!(G::LieGroup{π½,AdditionGroupOperation}, Y, g, h, X)Compute the differential of the conjugate $c_g(h) = gβhβg^{-1} = g+h-g = h$, which simplifies for AdditionGroupOperation to $\mathrm{d}(c_g(h))[X] = X$.
LieGroups.diff_conjugate β Methoddiff_conjugate(G::LieGroup{π½,AdditionGroupOperation}, g, h, X)
diff_conjugate!(G::LieGroup{π½,AdditionGroupOperation}, Y, g, h, X)Compute the differential of the conjugate $c_g(h) = gβhβg^{-1} = g+h-g = h$, which simplifies for AdditionGroupOperation to $\mathrm{d}(c_g(h))[X] = X$.
LieGroups.diff_inv! β Methoddiff_inv(G::LieGroup{π½,AdditionGroupOperation}, g, X)
diff_inv!(G::LieGroup{π½,AdditionGroupOperation}, Y, g, X)Compute the differential of the inverse operation $ΞΉ_{\mathcal G}(g) = g^-1 = -g$, which simplifies for AdditionGroupOperation to $\mathrm{d}ΞΉ_{\mathcal G}(g)[X] = -X$
LieGroups.diff_inv β Methoddiff_inv(G::LieGroup{π½,AdditionGroupOperation}, g, X)
diff_inv!(G::LieGroup{π½,AdditionGroupOperation}, Y, g, X)Compute the differential of the inverse operation $ΞΉ_{\mathcal G}(g) = g^-1 = -g$, which simplifies for AdditionGroupOperation to $\mathrm{d}ΞΉ_{\mathcal G}(g)[X] = -X$
LieGroups.diff_left_compose! β Methoddiff_left_compose(G::LieGroup{π½,AdditionGroupOperation}, g, h, X)
diff_left_compose!(G::LieGroup{π½,AdditionGroupOperation}, Y, g, h, X)Compute the differential of the the group operation $g+h$ with respect to the left argument g. Here it simplifies for AdditionGroupOperation to $\mathrm{d}Ο_h(g)[X] = X$.
LieGroups.diff_left_compose β Methoddiff_left_compose(G::LieGroup{π½,AdditionGroupOperation}, g, h, X)
diff_left_compose!(G::LieGroup{π½,AdditionGroupOperation}, Y, g, h, X)Compute the differential of the the group operation $g+h$ with respect to the left argument g. Here it simplifies for AdditionGroupOperation to $\mathrm{d}Ο_h(g)[X] = X$.
LieGroups.diff_right_compose! β Methoddiff_right_compose(G::LieGroup{π½,AdditionGroupOperation}, g, h, X)
diff_right_compose!(G::LieGroup{π½,AdditionGroupOperation}, Y, g, h, X)Compute the differential of the group operation $gβh$, on an AbstractLieGroup G with respect to its second (right) argument h.
Another interpretation is to consider a function where we do a fixed multiplication from the left with g. i..e. the left group multiplication function $Ξ»_g(h) = gβh$ (where the left refers to the fixed argument $g$.).
For the AdditionGroupOperation it reads $\mathrm{d}Ξ»_g(h)[X] = X$.
LieGroups.diff_right_compose β Methoddiff_right_compose(G::LieGroup{π½,AdditionGroupOperation}, g, h, X)
diff_right_compose!(G::LieGroup{π½,AdditionGroupOperation}, Y, g, h, X)Compute the differential of the group operation $gβh$, on an AbstractLieGroup G with respect to its second (right) argument h.
Another interpretation is to consider a function where we do a fixed multiplication from the left with g. i..e. the left group multiplication function $Ξ»_g(h) = gβh$ (where the left refers to the fixed argument $g$.).
For the AdditionGroupOperation it reads $\mathrm{d}Ξ»_g(h)[X] = X$.
LieGroups.identity_element! β Methodidentity_element(G::LieGroup{π½,AdditionGroupOperation})
identity_element!(G::LieGroup{π½,AdditionGroupOperation}, e)Return the a point representation of the Identity, which for the AdditionGroupOperation is the zero element or array.
LieGroups.identity_element β Methodidentity_element(G::LieGroup{π½,AdditionGroupOperation})
identity_element!(G::LieGroup{π½,AdditionGroupOperation}, e)Return the a point representation of the Identity, which for the AdditionGroupOperation is the zero element or array.
LieGroups.inv! β Methodinv(G::LieGroup{π½,AdditionGroupOperation}, g)
inv!(G::LieGroup{π½,AdditionGroupOperation}, h, g)Compute the inverse group element $g^{-1}$, which for the AdditionGroupOperation simplifies to $-g$. This can be done in-place of h.
LieGroups.lie_bracket! β Methodlie_bracket!(π€::LieAlgebra{π½,AdditionGroupOperation}, X, Y)
lie_bracket!(π€::LieAlgebra{π½,AdditionGroupOperation}, Z, X, Y)Compute the Lie bracket $[β
,β
]: \mathfrak gΓ\mathfrak g β \mathfrak g$, which for the for the AdditionGroupOperation simplifies to the corresponding zero_vector. The computation can be done in-place of Z.
LieGroups.lie_bracket β Methodlie_bracket!(π€::LieAlgebra{π½,AdditionGroupOperation}, X, Y)
lie_bracket!(π€::LieAlgebra{π½,AdditionGroupOperation}, Z, X, Y)Compute the Lie bracket $[β
,β
]: \mathfrak gΓ\mathfrak g β \mathfrak g$, which for the for the AdditionGroupOperation simplifies to the corresponding zero_vector. The computation can be done in-place of Z.
ManifoldsBase.exp! β Methodexp(G::LieGroup{π½,AdditionGroupOperation}, X)
exp!(G::LieGroup{π½,AdditionGroupOperation}, g, X)Compute the Lie group exponential on a LieGroup with an AdditionGroupOperation. This can be computed in-place of g.
Since e is just the zero-element with respect to the corresponding +, the formula reads $g=0+X=X$.
ManifoldsBase.log! β Methodlog(G::LieGroup{π½,AdditionGroupOperation}, g)
log!(G::LieGroup{π½,AdditionGroupOperation}, X, g)Compute the Lie group logarithm on a LieGroup with an AdditionGroupOperation. This can be computed in-place of X.
Since e is just the zero-element with respect to the corresponding +, the formula reads $X=g-0=g$.
Multiplication group operation
LieGroups.AbstractMultiplicationGroupOperation β TypeAbstractMultiplicationGroupOperation <: AbstractGroupOperationA group operation that is realised introducing defaults that fall back to * being overloaded, for example _compose(G::LieGroup{π½,<:AbstractMultiplicationGroupOperation}, a, b) = a * b
LieGroups.MatrixMultiplicationGroupOperation β TypeMatrixMultiplicationGroupOperation <: AbstractMultiplicationGroupOperationA group operation that is realised by a matrix multiplication.
Base.exp β Methodexp(G::LieGroup{π½,<:AbstractMultiplicationGroupOperation}, X)
exp!(G::LieGroup{π½,<:AbstractMultiplicationGroupOperation}, g, X)Compute the Lie group exponential on a LieGroup with an AbstractMultiplicationGroupOperation, which simplifies to the matrix exponential.
This can be computed in-place of g.
Base.inv β Methodinv(G::LieGroup{π½,<:AbstractMultiplicationGroupOperation}, g)
inv!(G::LieGroup{π½,<:AbstractMultiplicationGroupOperation}, h, g)Compute the inverse group element $g^{-1}$, which for an AbstractMultiplicationGroupOperation simplifies to the multiplicative inverse $g^{-1}$. This can be done in-place of h.
Base.log β Methodlog(G::LieGroup{π½,<:AbstractMultiplicationGroupOperation}, g)
log!(G::LieGroup{π½,<:AbstractMultiplicationGroupOperation}, X, g)Compute the Lie group logarithm on a LieGroup with a concrete instance of AbstractMultiplicationGroupOperation, which simplifies to the (matrix) logarithm.
This can be computed in-place of X.
LieGroups.compose! β Methodcompose(G::LieGroup{π½,<:AbstractMultiplicationGroupOperation}, g, h)
compose!(G::LieGroup{π½,<:AbstractMultiplicationGroupOperation}, k, g, h)Compute the group operation composition of g and h with respect to an AbstractMultiplicationGroupOperation on an LieGroup G, which falls back to calling g*h, where * is assumed to be overloaded accordingly.
This can be computed in-place of k.
LieGroups.compose β Methodcompose(G::LieGroup{π½,<:AbstractMultiplicationGroupOperation}, g, h)
compose!(G::LieGroup{π½,<:AbstractMultiplicationGroupOperation}, k, g, h)Compute the group operation composition of g and h with respect to an AbstractMultiplicationGroupOperation on an LieGroup G, which falls back to calling g*h, where * is assumed to be overloaded accordingly.
This can be computed in-place of k.
LieGroups.diff_conjugate! β Methoddiff_conjugate(G::LieGroup{π½,<:AbstractMultiplicationGroupOperation}, g, h, X)
diff_conjugate!(G::LieGroup{π½,<:AbstractMultiplicationGroupOperation}, Y, g, h, X)Compute the differential of the conjugate $c_g(h) = gβhβg^{-1} = ghg^{-1}$, which simplifies for an AbstractMultiplicationGroupOperationto $\mathrm{d}(c_g(h))[X] = gXg^{-1}$.
LieGroups.diff_conjugate β Methoddiff_conjugate(G::LieGroup{π½,<:AbstractMultiplicationGroupOperation}, g, h, X)
diff_conjugate!(G::LieGroup{π½,<:AbstractMultiplicationGroupOperation}, Y, g, h, X)Compute the differential of the conjugate $c_g(h) = gβhβg^{-1} = ghg^{-1}$, which simplifies for an AbstractMultiplicationGroupOperationto $\mathrm{d}(c_g(h))[X] = gXg^{-1}$.
LieGroups.diff_inv! β Methoddiff_inv(G::LieGroup{π½, <:AbstractMultiplicationGroupOperation}, g, X)
diff_inv!(G::LieGroup{π½, <:AbstractMultiplicationGroupOperation}, Y, g, X)Compute the value of differential $\mathrm{d}ΞΉ_{\mathcal G}(g)[X]$ of matrix inversion $ΞΉ_{\mathcal G}(g) := g^{-1}$ at $X β π€$ in the LieAlgebra $π€$ of the LieGroup G.
The (classical) differential $\mathrm{D}ΞΉ_{\mathcal G}(g): T_g\mathcal G β T_{g^{-1}}\mathcal G$ reads
\[ \mathrm{D}ΞΉ_{\mathcal G}(g)[W] = -g^{-1}Wg^{-1} = -Xg^{-1} = -g^{-1}(gXg^{-1}) = -g^{-1}\mathrm{Ad}(g)[X] = V β T_{g^{-1}}\mathcal G,\]
see e.g. [Gil08]. To bring this back to the Lie algebra, we Write $V = g^{-1}Y β T_{g^{-1}}\mathcal G$ for some $Y β π€$ and obtain
\[ \mathrm{d} ΞΉ_{\mathcal G}(g)[X] = -\mathrm{Ad}(g)[X] β π€,\]
where we use $\mathrm{d}$ to denote the differential in the Lie algebra.
LieGroups.diff_inv β Methoddiff_inv(G::LieGroup{π½, <:AbstractMultiplicationGroupOperation}, g, X)
diff_inv!(G::LieGroup{π½, <:AbstractMultiplicationGroupOperation}, Y, g, X)Compute the value of differential $\mathrm{d}ΞΉ_{\mathcal G}(g)[X]$ of matrix inversion $ΞΉ_{\mathcal G}(g) := g^{-1}$ at $X β π€$ in the LieAlgebra $π€$ of the LieGroup G.
The (classical) differential $\mathrm{D}ΞΉ_{\mathcal G}(g): T_g\mathcal G β T_{g^{-1}}\mathcal G$ reads
\[ \mathrm{D}ΞΉ_{\mathcal G}(g)[W] = -g^{-1}Wg^{-1} = -Xg^{-1} = -g^{-1}(gXg^{-1}) = -g^{-1}\mathrm{Ad}(g)[X] = V β T_{g^{-1}}\mathcal G,\]
see e.g. [Gil08]. To bring this back to the Lie algebra, we Write $V = g^{-1}Y β T_{g^{-1}}\mathcal G$ for some $Y β π€$ and obtain
\[ \mathrm{d} ΞΉ_{\mathcal G}(g)[X] = -\mathrm{Ad}(g)[X] β π€,\]
where we use $\mathrm{d}$ to denote the differential in the Lie algebra.
LieGroups.diff_left_compose! β Methoddiff_left_compose(G::LieGroup{π½,<:AbstractMultiplicationGroupOperation}, g, h, X)
diff_left_compose!(G::LieGroup{π½,<:AbstractMultiplicationGroupOperation}, Y, g, h, X)Compute the differential of the group operation $gβh$, on an AbstractLieGroup G with respect to its first (left) argument g.
Another interpretation is to consider a function where we do a fixed multiplication from the right with h. i..e. the right group multiplication function $Ο_h(g) = gβh$.
The differential simplifies for an AbstractMultiplicationGroupOperation to
\[\mathrm{d} Ο_h(g)[X] = h^{-1}Xh = \mathrm{Ad}(h^{-1})[X] β π€,\]
where $\mathrm{Ad}$ denotes the adjoint.
LieGroups.diff_left_compose β Methoddiff_left_compose(G::LieGroup{π½,<:AbstractMultiplicationGroupOperation}, g, h, X)
diff_left_compose!(G::LieGroup{π½,<:AbstractMultiplicationGroupOperation}, Y, g, h, X)Compute the differential of the group operation $gβh$, on an AbstractLieGroup G with respect to its first (left) argument g.
Another interpretation is to consider a function where we do a fixed multiplication from the right with h. i..e. the right group multiplication function $Ο_h(g) = gβh$.
The differential simplifies for an AbstractMultiplicationGroupOperation to
\[\mathrm{d} Ο_h(g)[X] = h^{-1}Xh = \mathrm{Ad}(h^{-1})[X] β π€,\]
where $\mathrm{Ad}$ denotes the adjoint.
LieGroups.diff_right_compose! β Methoddiff_right_compose(G::LieGroup{π½,<:AbstractMultiplicationGroupOperation}, g, h, X)
diff_right_compose!(G::LieGroup{π½,<:AbstractMultiplicationGroupOperation}, Y, g, h, X)Compute the differential of the group operation $gβh$, on an AbstractLieGroup G with respect to its second (right) argument h.
Another interpretation is to consider a function where we do a fixed multiplication from the left with g. i..e. the left group multiplication function $Ξ»_g(h) = gβh$.
It reads for an AbstractMultiplicationGroupOperation $\mathrm{d}Ξ»_g(h)[X] = X$.
LieGroups.diff_right_compose β Methoddiff_right_compose(G::LieGroup{π½,<:AbstractMultiplicationGroupOperation}, g, h, X)
diff_right_compose!(G::LieGroup{π½,<:AbstractMultiplicationGroupOperation}, Y, g, h, X)Compute the differential of the group operation $gβh$, on an AbstractLieGroup G with respect to its second (right) argument h.
Another interpretation is to consider a function where we do a fixed multiplication from the left with g. i..e. the left group multiplication function $Ξ»_g(h) = gβh$.
It reads for an AbstractMultiplicationGroupOperation $\mathrm{d}Ξ»_g(h)[X] = X$.
LieGroups.identity_element! β Methodidentity_element(G::LieGroup{π½,<:AbstractMultiplicationGroupOperation})
identity_element!(G::LieGroup{π½,<:AbstractMultiplicationGroupOperation}, e)Return the a point representation of the Identity, which for an AbstractMultiplicationGroupOperation is the one-element or identity array.
LieGroups.identity_element β Methodidentity_element(G::LieGroup{π½,<:AbstractMultiplicationGroupOperation})
identity_element!(G::LieGroup{π½,<:AbstractMultiplicationGroupOperation}, e)Return the a point representation of the Identity, which for an AbstractMultiplicationGroupOperation is the one-element or identity array.
LieGroups.inv! β Methodinv(G::LieGroup{π½,<:AbstractMultiplicationGroupOperation}, g)
inv!(G::LieGroup{π½,<:AbstractMultiplicationGroupOperation}, h, g)Compute the inverse group element $g^{-1}$, which for an AbstractMultiplicationGroupOperation simplifies to the multiplicative inverse $g^{-1}$. This can be done in-place of h.
LieGroups.lie_bracket! β Methodlie_bracket(::LieAlgebra{π½,MatrixMultiplicationGroupOperation}, X, Y)
lie_bracket!(::LieAlgebra{π½,MatrixMultiplicationGroupOperation}, Z, X, Y)Compute the Lie bracket $[β
,β
]: \mathfrak gΓ\mathfrak g β \mathfrak g$, which for the for the MatrixMultiplicationGroupOperation yields the commutator bracket
\[[X, Y] = XY-YX\]
The computation can be done in-place of Z.
LieGroups.lie_bracket β Methodlie_bracket(::LieAlgebra{π½,MatrixMultiplicationGroupOperation}, X, Y)
lie_bracket!(::LieAlgebra{π½,MatrixMultiplicationGroupOperation}, Z, X, Y)Compute the Lie bracket $[β
,β
]: \mathfrak gΓ\mathfrak g β \mathfrak g$, which for the for the MatrixMultiplicationGroupOperation yields the commutator bracket
\[[X, Y] = XY-YX\]
The computation can be done in-place of Z.
ManifoldsBase.exp! β Methodexp(G::LieGroup{π½,<:AbstractMultiplicationGroupOperation}, X)
exp!(G::LieGroup{π½,<:AbstractMultiplicationGroupOperation}, g, X)Compute the Lie group exponential on a LieGroup with an AbstractMultiplicationGroupOperation, which simplifies to the matrix exponential.
This can be computed in-place of g.
ManifoldsBase.log! β Methodlog(G::LieGroup{π½,<:AbstractMultiplicationGroupOperation}, g)
log!(G::LieGroup{π½,<:AbstractMultiplicationGroupOperation}, X, g)Compute the Lie group logarithm on a LieGroup with a concrete instance of AbstractMultiplicationGroupOperation, which simplifies to the (matrix) logarithm.
This can be computed in-place of X.
Abelian multiplication group operation
Since the commutativity of some Lie groups leads to a significant simplification of computations on those groups, the abelian multiplication group operation optimizes these cases. Additionally, it provides an interface for the abelian Lie groups. Some of these can are represented by isbits-types, which don't have mutating variants of the functions.
LieGroups.AbelianMultiplicationGroupOperation β TypeAbelianMultiplicationGroupOperation <: AbstractMultiplicationGroupOperationA group operation that is realised by an abelian multiplication.
Base.exp β Methodexp(G::LieGroup{π½,<:AbelianMultiplicationGroupOperation}, X)
exp(G::LieGroup{π½,<:AbelianMultiplicationGroupOperation}, g, X)
exp!(G::LieGroup{π½,<:AbelianMultiplicationGroupOperation}, h, X)
exp!(G::LieGroup{π½,<:AbelianMultiplicationGroupOperation}, h, g, X)Compute the Lie group exponential on a LieGroup at a point g or the Identity with an AbelianMultiplicationGroupOperation.
Due to differences in the representation of some abelian Lie groups, this method wraps a concrete implementation of a specific abelian LieGroup with inputs of type AbstractArray{<:Any,0} and supports in-place computation.
This can be computed in-place of h if h is mutable.
Base.inv β Methodinv(G::LieGroup{π½,<:AbstractMultiplicationGroupOperation}, g)
inv!(G::LieGroup{π½,<:AbstractMultiplicationGroupOperation}, h, g)Compute the inverse group element $g^{-1}$, which for the AbelianMultiplicationGroupOperation simplifies for a scalar input to the ordinary scalar inverse $g^{-1}$.
Due to differences in the representation of some abelian Lie groups, this method wraps a concrete implementation of a specific abelian LieGroup with inputs of type AbstractArray{<:Any,0} and supports in-place computation.
This can be computed in-place of h if h is mutable.
Base.log β Methodlog(G::LieGroup{π½,<:AbelianMultiplicationGroupOperation}, h)
log(G::LieGroup{π½,<:AbelianMultiplicationGroupOperation}, g, h)
log!(G::LieGroup{π½,<:AbeliantMultiplicationGroupOperation}, X, g)
log!(G::LieGroup{π½,<:AbeliantMultiplicationGroupOperation}, X, g, h)Compute the Lie group logarithm on a LieGroup at a point g or the Identity with a concrete instance of AbelianMultiplicationGroupOperation.
Due to differences in the representation of some abelian Lie groups, this method wraps a concrete implementation of a specific abelian LieGroup with inputs of type AbstractArray{<:Any,0} and supports in-place computation.
This can be computed in-place of X if X is mutable.
LieGroups.diff_conjugate! β Methoddiff_conjugate(G::LieGroup{π½,<:AbelianMultiplicationGroupOperation}, g, h, X)
diff_conjugate!(G::LieGroup{π½,<:AbelianMultiplicationGroupOperation}, Y, g, h, X)Compute the differential of the conjugate $c_g(h) = gβhβg^{-1} = ghg^{-1}$, which simplifies for an AbelianMultiplicationGroupOperation to $\mathrm{d}(c_g(h))[X] = X$.
This can be computed in-place of Y.
LieGroups.diff_conjugate β Methoddiff_conjugate(G::LieGroup{π½,<:AbelianMultiplicationGroupOperation}, g, h, X)
diff_conjugate!(G::LieGroup{π½,<:AbelianMultiplicationGroupOperation}, Y, g, h, X)Compute the differential of the conjugate $c_g(h) = gβhβg^{-1} = ghg^{-1}$, which simplifies for an AbelianMultiplicationGroupOperation to $\mathrm{d}(c_g(h))[X] = X$.
This can be computed in-place of Y.
LieGroups.diff_inv! β Methoddiff_inv(G::LieGroup{π½,<:AbelianMultiplicationGroupOperation}, g, X)
diff_inv!(G::LieGroup{π½,<:AbelianMultiplicationGroupOperation}, Y, g, X)Compute the value of the differential $\mathrm{d}ΞΉ_{\mathcal G}(g)[X]$ of the inversion $ΞΉ_{\mathcal G}(g) := g^{-1}$ at $X β π€$ in the LieAlgebra $π€$ of the LieGroup G.
In the Abelian case, the computation simplifies to
\[\mathrm{d}ΞΉ_{\mathcal G}(g)[X] = -gXg^{-1} = -X.\]
This can be computed in-place of Y if Y is mutable.
LieGroups.diff_left_compose! β Methoddiff_left_compose(G::LieGroup{π½,<:AbelianMultiplicationGroupOperation}, g, h, X)
diff_left_compose!(G::LieGroup{π½,<:AbelianMultiplicationGroupOperation}, Y, g, h, X)Compute the differential of the group operation $gβh$, on an AbstractLieGroup G with respect to its first (left) argument g.
Another interpretation is to consider a function where we do a fixed multiplication from the right with h. i..e. the right group multiplication function $Ο_h(g) = gβh$.
The differential simplifies for an AbelianMultiplicationGroupOperation to the identity, i.e. $\mathrm{d}Ο_h(g)[X] = X$.
This can be computed in-place of Y if Y is mutable.
LieGroups.diff_left_compose β Methoddiff_left_compose(G::LieGroup{π½,<:AbelianMultiplicationGroupOperation}, g, h, X)
diff_left_compose!(G::LieGroup{π½,<:AbelianMultiplicationGroupOperation}, Y, g, h, X)Compute the differential of the group operation $gβh$, on an AbstractLieGroup G with respect to its first (left) argument g.
Another interpretation is to consider a function where we do a fixed multiplication from the right with h. i..e. the right group multiplication function $Ο_h(g) = gβh$.
The differential simplifies for an AbelianMultiplicationGroupOperation to the identity, i.e. $\mathrm{d}Ο_h(g)[X] = X$.
This can be computed in-place of Y if Y is mutable.
LieGroups.diff_right_compose! β Methoddiff_right_compose(G::LieGroup{π½,<:AbelianMultiplicationGroupOperation}, g, h, X)
diff_right_compose!(G::LieGroup{π½,<:AbelianMultiplicationGroupOperation}, Y, g, h, X)Compute the differential of the group operation $gβh$, on an AbstractLieGroup G with respect to its second (right) argument h.
Another interpretation is to consider a function where we do a fixed multiplication from the left with g. i..e. the left group multiplication function $Ξ»_g(h) = gβh$.
The differential simplifies for an AbelianMultiplicationGroupOperation to the identity, i.e. $\mathrm{d}Ξ»_g(h)[X] = X$.
LieGroups.diff_right_compose β Methoddiff_right_compose(G::LieGroup{π½,<:AbelianMultiplicationGroupOperation}, g, h, X)
diff_right_compose!(G::LieGroup{π½,<:AbelianMultiplicationGroupOperation}, Y, g, h, X)Compute the differential of the group operation $gβh$, on an AbstractLieGroup G with respect to its second (right) argument h.
Another interpretation is to consider a function where we do a fixed multiplication from the left with g. i..e. the left group multiplication function $Ξ»_g(h) = gβh$.
The differential simplifies for an AbelianMultiplicationGroupOperation to the identity, i.e. $\mathrm{d}Ξ»_g(h)[X] = X$.
LieGroups.identity_element! β Methodidentity_element(G::LieGroup{π½,AbelianMultiplicationGroupOperation})
identity_element!(G::LieGroup{π½,AbelianMultiplicationGroupOperation}, e)Return the point representation of the Identity, which for an AbelianMultiplicationGroupOperation is the one-element.
This can be computed in e if e is mutable.
LieGroups.identity_element β Methodidentity_element(G::LieGroup{π½,AbelianMultiplicationGroupOperation})
identity_element!(G::LieGroup{π½,AbelianMultiplicationGroupOperation}, e)Return the point representation of the Identity, which for an AbelianMultiplicationGroupOperation is the one-element.
This can be computed in e if e is mutable.
LieGroups.inv! β Methodinv(G::LieGroup{π½,<:AbstractMultiplicationGroupOperation}, g)
inv!(G::LieGroup{π½,<:AbstractMultiplicationGroupOperation}, h, g)Compute the inverse group element $g^{-1}$, which for the AbelianMultiplicationGroupOperation simplifies for a scalar input to the ordinary scalar inverse $g^{-1}$.
Due to differences in the representation of some abelian Lie groups, this method wraps a concrete implementation of a specific abelian LieGroup with inputs of type AbstractArray{<:Any,0} and supports in-place computation.
This can be computed in-place of h if h is mutable.
LieGroups.lie_bracket! β Methodlie_bracket(::LieAlgebra{π½,AbelianMultiplicationGroupOperation}, X, Y)
lie_bracket!(::LieAlgebra{π½,AbelianMultiplicationGroupOperation}, Z, X, Y)Compute the Lie bracket $[β
,β
]: \mathfrak gΓ\mathfrak g β \mathfrak g$, which for the for the AbelianMultiplicationGroupOperation yields the zero vector of the LieAlgebra due to commutativity.
\[[X, Y] = XY-YX = 0\]
The computation can be done in-place of Z if Z is mutable.
LieGroups.lie_bracket β Methodlie_bracket(::LieAlgebra{π½,AbelianMultiplicationGroupOperation}, X, Y)
lie_bracket!(::LieAlgebra{π½,AbelianMultiplicationGroupOperation}, Z, X, Y)Compute the Lie bracket $[β
,β
]: \mathfrak gΓ\mathfrak g β \mathfrak g$, which for the for the AbelianMultiplicationGroupOperation yields the zero vector of the LieAlgebra due to commutativity.
\[[X, Y] = XY-YX = 0\]
The computation can be done in-place of Z if Z is mutable.
ManifoldsBase.exp! β Methodexp(G::LieGroup{π½,<:AbelianMultiplicationGroupOperation}, X)
exp(G::LieGroup{π½,<:AbelianMultiplicationGroupOperation}, g, X)
exp!(G::LieGroup{π½,<:AbelianMultiplicationGroupOperation}, h, X)
exp!(G::LieGroup{π½,<:AbelianMultiplicationGroupOperation}, h, g, X)Compute the Lie group exponential on a LieGroup at a point g or the Identity with an AbelianMultiplicationGroupOperation.
Due to differences in the representation of some abelian Lie groups, this method wraps a concrete implementation of a specific abelian LieGroup with inputs of type AbstractArray{<:Any,0} and supports in-place computation.
This can be computed in-place of h if h is mutable.
ManifoldsBase.log! β Methodlog(G::LieGroup{π½,<:AbelianMultiplicationGroupOperation}, h)
log(G::LieGroup{π½,<:AbelianMultiplicationGroupOperation}, g, h)
log!(G::LieGroup{π½,<:AbeliantMultiplicationGroupOperation}, X, g)
log!(G::LieGroup{π½,<:AbeliantMultiplicationGroupOperation}, X, g, h)Compute the Lie group logarithm on a LieGroup at a point g or the Identity with a concrete instance of AbelianMultiplicationGroupOperation.
Due to differences in the representation of some abelian Lie groups, this method wraps a concrete implementation of a specific abelian LieGroup with inputs of type AbstractArray{<:Any,0} and supports in-place computation.
This can be computed in-place of X if X is mutable.
Literature
- [Gil08]
- M.Β B.Β Giles. Collected Matrix Derivative Results for Forward and Reverse Mode Algorithmic Differentiation. In: Advances in Automatic Differentiation, Lecture Notes in Computational Science and Engineering, edited by C.Β H.Β Bischof, H.Β M.Β BΓΌcker, P.Β Hovland, U.Β Naumann and J.Β Utke (Springer, Berlin, Heidelberg, 2008); pp.Β 35β44.