How to record data during the iterations
Ronny Bergmann
The recording and debugging features make it possible to record nearly any data during the iterations. This tutorial illustrates how to:
- record one value during the iterations;
- record multiple values during the iterations and access them afterwards;
- define an own
RecordAction
to perform individual recordings.
Several predefined recordings exist, for example RecordCost
or RecordGradient
, if the problem the solver uses provides a gradient. For fields of the State
the recording can also be done RecordEntry
. For other recordings, for example more advanced computations before storing a value, an own RecordAction
can be defined.
We illustrate these using the gradient descent from the Get started: optimize! tutorial.
Here the focus is put on ways to investigate the behaviour during iterations by using Recording techniques.
Let’s first load the necessary packages.
using Manopt, Manifolds, Random, ManifoldDiff
using ManifoldDiff: grad_distance
Random.seed!(42);
The Objective
We generate data and define our cost and gradient:
Random.seed!(42)
m = 30
M = Sphere(m)
n = 800
σ = π / 8
x = zeros(Float64, m + 1)
x[2] = 1.0
data = [exp(M, x, σ * rand(M; vector_at=x)) for i in 1:n]
f(M, p) = sum(1 / (2 * n) * distance.(Ref(M), Ref(p), data) .^ 2)
grad_f(M, p) = sum(1 / n * grad_distance.(Ref(M), data, Ref(p)))
grad_f (generic function with 1 method)
Plain Examples
For the high level interfaces of the solvers, like gradient_descent
we have to set return_state
to true
to obtain the whole solver state and not only the resulting minimizer.
Then we can easily use the record=
option to add recorded values. This keyword accepts RecordAction
s as well as several symbols as shortcuts, for example :Cost
to record the cost, or if your options have a field f
, :f
would record that entry. An overview of the symbols that can be used is given here.
We first just record the cost after every iteration
R = gradient_descent(M, f, grad_f, data[1]; record=:Cost, return_state=true)
# Solver state for `Manopt.jl`s Gradient Descent
After 60 iterations
## Parameters
* retraction method: ExponentialRetraction()
## Stepsize
ArmijoLinesearch() with keyword parameters
* initial_stepsize = 1.0
* retraction_method = ExponentialRetraction()
* contraction_factor = 0.95
* sufficient_decrease = 0.1
## Stopping criterion
Stop When _one_ of the following are fulfilled:
Max Iteration 200: not reached
|grad f| < 1.0e-8: reached
Overall: reached
This indicates convergence: Yes
## Record
(Iteration = RecordCost(),)
From the returned state, we see that the GradientDescentState
are encapsulated (decorated) within a RecordSolverState
.
For such a state, one can attach different recorders to some operations, currently to :Start
. :Stop
, and :Iteration
, where :Iteration
is the default when using the record=
keyword with a RecordAction
as above. We can access all values recorded during the iterations by calling get_record(R, :Iteation)
or since this is the default even shorter
get_record(R)
60-element Vector{Float64}:
0.6868754085841272
0.6240211444102516
0.5900374782569905
0.5691425134106757
0.5512819383843195
0.542136810022984
0.5374585627386623
0.5350045365259574
0.5337243124406585
0.5330491236590466
0.5326944302021914
0.5325071127227716
0.5324084047176342
⋮
0.5322977905736846
0.5322977905736771
0.5322977905736733
0.5322977905736712
0.5322977905736699
0.5322977905736691
0.5322977905736687
0.5322977905736684
0.5322977905736683
0.5322977905736682
0.5322977905736681
0.5322977905736681
To record more than one value, you can pass an array of a mix of symbols and RecordAction
s which formally introduces RecordGroup
. Such a group records a tuple of values in every iteration:
R2 = gradient_descent(M, f, grad_f, data[1]; record=[:Iteration, :Cost], return_state=true)
# Solver state for `Manopt.jl`s Gradient Descent
After 60 iterations
## Parameters
* retraction method: ExponentialRetraction()
## Stepsize
ArmijoLinesearch() with keyword parameters
* initial_stepsize = 1.0
* retraction_method = ExponentialRetraction()
* contraction_factor = 0.95
* sufficient_decrease = 0.1
## Stopping criterion
Stop When _one_ of the following are fulfilled:
Max Iteration 200: not reached
|grad f| < 1.0e-8: reached
Overall: reached
This indicates convergence: Yes
## Record
(Iteration = RecordGroup([RecordIteration(), RecordCost()]),)
Here, the symbol :Cost
is mapped to using the RecordCost
action. The same holds for :Iteration
obviously records the current iteration number i
. To access these you can first extract the group of records (that is where the :Iteration
s are recorded; note the plural) and then access the :Cost
““”
get_record_action(R2, :Iteration)
RecordGroup([RecordIteration(), RecordCost()])
Since iteration
is the default, we can also omit it here again. To access single recorded values, one can use
get_record_action(R2)[:Cost]
60-element Vector{Float64}:
0.6868754085841272
0.6240211444102516
0.5900374782569905
0.5691425134106757
0.5512819383843195
0.542136810022984
0.5374585627386623
0.5350045365259574
0.5337243124406585
0.5330491236590466
0.5326944302021914
0.5325071127227716
0.5324084047176342
⋮
0.5322977905736846
0.5322977905736771
0.5322977905736733
0.5322977905736712
0.5322977905736699
0.5322977905736691
0.5322977905736687
0.5322977905736684
0.5322977905736683
0.5322977905736682
0.5322977905736681
0.5322977905736681
This can be also done by using a the high level interface get_record
get_record(R2, :Iteration, :Cost)
60-element Vector{Float64}:
0.6868754085841272
0.6240211444102516
0.5900374782569905
0.5691425134106757
0.5512819383843195
0.542136810022984
0.5374585627386623
0.5350045365259574
0.5337243124406585
0.5330491236590466
0.5326944302021914
0.5325071127227716
0.5324084047176342
⋮
0.5322977905736846
0.5322977905736771
0.5322977905736733
0.5322977905736712
0.5322977905736699
0.5322977905736691
0.5322977905736687
0.5322977905736684
0.5322977905736683
0.5322977905736682
0.5322977905736681
0.5322977905736681
Note that the first symbol again refers to the point where we record (not to the thing we record). We can also pass a tuple as second argument to have our own order within the tuples returned. Switching the order of recorded cost and Iteration can be done using ““”
get_record(R2, :Iteration, (:Iteration, :Cost))
60-element Vector{Tuple{Int64, Float64}}:
(1, 0.6868754085841272)
(2, 0.6240211444102516)
(3, 0.5900374782569905)
(4, 0.5691425134106757)
(5, 0.5512819383843195)
(6, 0.542136810022984)
(7, 0.5374585627386623)
(8, 0.5350045365259574)
(9, 0.5337243124406585)
(10, 0.5330491236590466)
(11, 0.5326944302021914)
(12, 0.5325071127227716)
(13, 0.5324084047176342)
⋮
(49, 0.5322977905736846)
(50, 0.5322977905736771)
(51, 0.5322977905736733)
(52, 0.5322977905736712)
(53, 0.5322977905736699)
(54, 0.5322977905736691)
(55, 0.5322977905736687)
(56, 0.5322977905736684)
(57, 0.5322977905736683)
(58, 0.5322977905736682)
(59, 0.5322977905736681)
(60, 0.5322977905736681)
A more complex example
To illustrate a complicated example let’s record:
- the iteration number, cost and gradient field, but only every sixth iteration;
- the iteration at which we stop.
We first generate the problem and the state, to also illustrate the low-level works when not using the high-level interface gradient_descent
.
p = DefaultManoptProblem(M, ManifoldGradientObjective(f, grad_f))
s = GradientDescentState(
M,
copy(data[1]);
stopping_criterion=StopAfterIteration(200) | StopWhenGradientNormLess(10.0^-9),
)
# Solver state for `Manopt.jl`s Gradient Descent
## Parameters
* retraction method: ExponentialRetraction()
## Stepsize
ArmijoLinesearch() with keyword parameters
* initial_stepsize = 1.0
* retraction_method = ExponentialRetraction()
* contraction_factor = 0.95
* sufficient_decrease = 0.1
## Stopping criterion
Stop When _one_ of the following are fulfilled:
Max Iteration 200: not reached
|grad f| < 1.0e-9: not reached
Overall: not reached
This indicates convergence: No
We now first build a RecordGroup
to group the three entries we want to record per iteration. We then put this into a RecordEvery
to only record this every sixth iteration
rI = RecordEvery(
RecordGroup([
:Iteration => RecordIteration(),
:Cost => RecordCost(),
:Gradient => RecordEntry(similar(data[1]), :X),
]),
6,
)
RecordEvery(RecordGroup([RecordIteration(), RecordCost(), RecordEntry(:X)]), 6, true)
and for recording the final iteration number
sI = RecordIteration()
RecordIteration()
We now combine both into the RecordSolverState
decorator. It acts completely the same as any AbstractManoptSolverState
but records something in every iteration additionally. This is stored in a dictionary of RecordAction
s, where :Iteration
is the action (here the only every sixth iteration group) and the sI
which is executed at stop.
Note that the keyword record=
in the high level interface gradient_descent
only would fill the :Iteration
symbol of said dictionary.
r = RecordSolverState(s, Dict(:Iteration => rI, :Stop => sI))
# Solver state for `Manopt.jl`s Gradient Descent
## Parameters
* retraction method: ExponentialRetraction()
## Stepsize
ArmijoLinesearch() with keyword parameters
* initial_stepsize = 1.0
* retraction_method = ExponentialRetraction()
* contraction_factor = 0.95
* sufficient_decrease = 0.1
## Stopping criterion
Stop When _one_ of the following are fulfilled:
Max Iteration 200: not reached
|grad f| < 1.0e-9: not reached
Overall: not reached
This indicates convergence: No
## Record
(Iteration = RecordEvery(RecordGroup([RecordIteration(), RecordCost(), RecordEntry(:X)]), 6, true), Stop = RecordIteration())
We now call the solver
res = solve!(p, r)
# Solver state for `Manopt.jl`s Gradient Descent
After 65 iterations
## Parameters
* retraction method: ExponentialRetraction()
## Stepsize
ArmijoLinesearch() with keyword parameters
* initial_stepsize = 1.0
* retraction_method = ExponentialRetraction()
* contraction_factor = 0.95
* sufficient_decrease = 0.1
## Stopping criterion
Stop When _one_ of the following are fulfilled:
Max Iteration 200: not reached
|grad f| < 1.0e-9: reached
Overall: reached
This indicates convergence: Yes
## Record
(Iteration = RecordEvery(RecordGroup([RecordIteration(), RecordCost(), RecordEntry(:X)]), 6, true), Stop = RecordIteration())
And we can check the recorded value at :Stop
to see how many iterations were performed
get_record(res, :Stop)
1-element Vector{Int64}:
65
and the other values during the iterations are
get_record(res, :Iteration, (:Iteration, :Cost))
10-element Vector{Tuple{Int64, Float64}}:
(6, 0.542136810022984)
(12, 0.5325071127227716)
(18, 0.5323023757104093)
(24, 0.5322978928223224)
(30, 0.5322977928970517)
(36, 0.5322977906274986)
(42, 0.5322977905749401)
(48, 0.5322977905736989)
(54, 0.5322977905736691)
(60, 0.5322977905736681)
Writing an own RecordAction
s
Let’s investigate where we want to count the number of function evaluations, again just to illustrate, since for the gradient this is just one evaluation per iteration. We first define a cost, that counts its own calls. ““”
mutable struct MyCost{T}
data::T
count::Int
end
MyCost(data::T) where {T} = MyCost{T}(data, 0)
function (c::MyCost)(M, x)
c.count += 1
return sum(1 / (2 * length(c.data)) * distance.(Ref(M), Ref(x), c.data) .^ 2)
end
and we define an own, new RecordAction
, which is a functor, that is a struct that is also a function. The function we have to implement is similar to a single solver step in signature, since it might get called every iteration:
mutable struct RecordCount <: RecordAction
recorded_values::Vector{Int}
RecordCount() = new(Vector{Int}())
end
function (r::RecordCount)(p::AbstractManoptProblem, ::AbstractManoptSolverState, i)
if i > 0
push!(r.recorded_values, Manopt.get_cost_function(get_objective(p)).count)
elseif i < 0 # reset if negative
r.recorded_values = Vector{Int}()
end
end
Now we can initialize the new cost and call the gradient descent. Note that this illustrates also the last use case since you can pass symbol-action pairs into the record=
array.
f2 = MyCost(data)
MyCost{Vector{Vector{Float64}}}([[-0.054658825167894595, -0.5592077846510423, -0.04738273828111257, -0.04682080720921302, 0.12279468849667038, 0.07171438895366239, -0.12930045409417057, -0.22102081626380404, -0.31805333254577767, 0.0065859500152017645 … -0.21999168261518043, 0.19570142227077295, 0.340909965798364, -0.0310802190082894, -0.04674431076254687, -0.006088297671169996, 0.01576037011323387, -0.14523596850249543, 0.14526158060820338, 0.1972125856685378], [-0.08192376929745249, -0.5097715132187676, -0.008339904915541005, 0.07289741328038676, 0.11422036270613797, -0.11546739299835748, 0.2296996932628472, 0.1490467170835958, -0.11124820565850364, -0.11790721606521781 … -0.16421249630470344, -0.2450575844467715, -0.07570080850379841, -0.07426218324072491, -0.026520181327346338, 0.11555341205250205, -0.0292955762365121, -0.09012096853677576, -0.23470556634911574, -0.026214242996704013], [-0.22951484264859257, -0.6083825348640186, 0.14273766477054015, -0.11947823367023377, 0.05984293499234536, 0.058820835498203126, 0.07577331705863266, 0.1632847202946857, 0.20244385489915745, 0.04389826920203656 … 0.3222365119325929, 0.009728730325524067, -0.12094785371632395, -0.36322323926212824, -0.0689253407939657, 0.23356953371702974, 0.23489531397909744, 0.078303336494718, -0.14272984135578806, 0.07844539956202407], [-0.0012588500237817606, -0.29958740415089763, 0.036738459489123514, 0.20567651907595125, -0.1131046432541904, -0.06032435985370224, 0.3366633723165895, -0.1694687746143405, -0.001987171245125281, 0.04933779858684409 … -0.2399584473006256, 0.19889267065775063, 0.22468755918787048, 0.1780090580180643, 0.023703860700539356, -0.10212737517121755, 0.03807004103115319, -0.20569120952458983, -0.03257704254233959, 0.06925473452536687], [-0.035534309946938375, -0.06645560787329002, 0.14823972268208874, -0.23913346587232426, 0.038347027875883496, 0.10453333143286662, 0.050933995140290705, -0.12319549375687473, 0.12956684644537844, -0.23540367869989412 … -0.41471772859912864, -0.1418984610380257, 0.0038321446836859334, 0.23655566917750157, -0.17500681300994742, -0.039189751036839374, -0.08687860620942896, -0.11509948162959047, 0.11378233994840942, 0.38739450723013735], [-0.3122539912469438, -0.3101935557860296, 0.1733113629107006, 0.08968593616209351, -0.1836344261367962, -0.06480023695256802, 0.18165070013886545, 0.19618275767992124, -0.07956460275570058, 0.0325997354656551 … 0.2845492418767769, 0.17406455870721682, -0.053101230371568706, -0.1382082812981627, 0.005830071475508364, 0.16739264037923055, 0.034365814374995335, 0.09107702398753297, -0.1877250428700409, 0.05116494897806923], [-0.04159442361185588, -0.7768029783272633, 0.06303616666722486, 0.08070518925253539, -0.07396265237309446, -0.06008109299719321, 0.07977141629715745, 0.019511027129056415, 0.08629917589924847, -0.11156298867318722 … 0.0792587504128044, -0.016444383900170008, -0.181746064577005, -0.01888129512990984, -0.13523922089388968, 0.11358102175659832, 0.07929049608459493, 0.1689565359083833, 0.07673657951723721, -0.1128480905648813], [-0.21221814304651335, -0.5031823821503253, 0.010326342133992458, -0.12438192100961257, 0.04004758695231872, 0.2280527500843805, -0.2096243232022162, -0.16564828762420294, -0.28325749481138984, 0.17033534605245823 … -0.13599096505924074, 0.28437770540525625, 0.08424426798544583, -0.1266207606984139, 0.04917635557603396, -0.00012608938533809706, -0.04283220254770056, -0.08771365647566572, 0.14750169103093985, 0.11601120086036351], [0.10683290707435536, -0.17680836277740156, 0.23767458301899405, 0.12011180867097299, -0.029404774462600154, 0.11522028383799933, -0.3318174480974519, -0.17859266746938374, 0.04352373642537759, 0.2530382802667988 … 0.08879861736692073, -0.004412506987801729, 0.19786810509925895, -0.1397104682727044, 0.09482328498485094, 0.05108149065160893, -0.14578343506951633, 0.3167479772660438, 0.10422673169182732, 0.21573150015891313], [-0.024895624707466164, -0.7473912016432697, -0.1392537238944721, -0.14948896791465557, -0.09765393283580377, 0.04413059403279867, -0.13865379004720355, -0.071032040283992, 0.15604054722246585, -0.10744260463413555 … -0.14748067081342833, -0.14743635071251024, 0.0643591937981352, 0.16138827697852615, -0.12656652133603935, -0.06463635704869083, 0.14329582429103488, -0.01113113793821713, 0.29295387893749997, 0.06774523575259782] … [0.011874845316569967, -0.6910596618389588, 0.21275741439477827, -0.014042545524367437, -0.07883613103495014, -0.0021900966696246776, -0.033836430464220496, 0.2925813113264835, -0.04718187201980008, 0.03949680289730036 … 0.0867736586603294, 0.0404682510051544, -0.24779813848587257, -0.28631514602877145, -0.07211767532456789, -0.15072898498180473, 0.017855923621826746, -0.09795357710255254, -0.14755229203084924, 0.1305005778855436], [0.013457629515450426, -0.3750353654626534, 0.12349883726772073, 0.3521803555005319, 0.2475921439420274, 0.006088649842999206, 0.31203183112392907, -0.036869203979483754, -0.07475746464056504, -0.029297797064479717 … 0.16867368684091563, -0.09450564983271922, -0.0587273302122711, -0.1326667940553803, -0.25530237980444614, 0.37556905374043376, 0.04922612067677609, 0.2605362549983866, -0.21871556587505667, -0.22915883767386164], [0.03295085436260177, -0.971861604433394, 0.034748713521512035, -0.0494065013245799, -0.01767479281403355, 0.0465459739459587, 0.007470494722096038, 0.003227960072276129, 0.0058328596338402365, -0.037591237446692356 … 0.03205152122876297, 0.11331109854742015, 0.03044900529526686, 0.017971704993311105, -0.009329252062960229, -0.02939354719650879, 0.022088835776251863, -0.02546111553658854, -0.0026257225461427582, 0.005702111697172774], [0.06968243992532257, -0.7119502191435176, -0.18136614593117445, -0.1695926215673451, 0.01725015359973796, -0.00694164951158388, -0.34621134287344574, 0.024709256792651912, -0.1632255805999673, -0.2158226433583082 … -0.14153772108081458, -0.11256850346909901, 0.045109821764180706, -0.1162754336222613, -0.13221711766357983, 0.005365354776191061, 0.012750671705879105, -0.018208207549835407, 0.12458753932455452, -0.31843587960340897], [-0.19830349374441875, -0.6086693423968884, 0.08552341811170468, 0.35781519334042255, 0.15790663648524367, 0.02712571268324985, 0.09855601327331667, -0.05840653973421127, -0.09546429767790429, -0.13414717696055448 … -0.0430935804718714, 0.2678584478951765, 0.08780994289014614, 0.01613469379498457, 0.0516187906322884, -0.07383067566731401, -0.1481272738354552, -0.010532317187265649, 0.06555344745952187, -0.1506167863762911], [-0.04347524125197773, -0.6327981074196994, -0.221116680035191, 0.0282207467940456, -0.0855024881522933, 0.12821801740178346, 0.1779499563280024, -0.10247384887512365, 0.0396432464100116, -0.0582580338112627 … 0.1253893207083573, 0.09628202269764763, 0.3165295473947355, -0.14915034201394833, -0.1376727867817772, -0.004153096613530293, 0.09277957650773738, 0.05917264554031624, -0.12230262590034507, -0.19655728521529914], [-0.10173946348675116, -0.6475660153977272, 0.1260284619729566, -0.11933160462857616, -0.04774310633937567, 0.09093928358804217, 0.041662676324043114, -0.1264739543938265, 0.09605293126911392, -0.16790474428001648 … -0.04056684573478108, 0.09351665120940456, 0.15259195558799882, 0.0009949298312580497, 0.09461980828206303, 0.3067004514287283, 0.16129258773733715, -0.18893664085007542, -0.1806865244492513, 0.029319680436405825], [-0.251780954320053, -0.39147463259941456, -0.24359579328578626, 0.30179309757665723, 0.21658893985206484, 0.12304585275893232, 0.28281133086451704, 0.029187615341955325, 0.03616243507191924, 0.029375588909979152 … -0.08071746662465404, -0.2176101928258658, 0.20944684921170825, 0.043033273425352715, -0.040505542460853576, 0.17935596149079197, -0.08454569418519972, 0.0545941597033932, 0.12471741052450099, -0.24314124407858329], [0.28156471341150974, -0.6708572780452595, -0.1410302363738465, -0.08322589397277698, -0.022772599832907418, -0.04447265789199677, -0.016448068022011157, -0.07490911512503738, 0.2778432295769144, -0.10191899088372378 … -0.057272155080983836, 0.12817478092201395, 0.04623814480781884, -0.12184190164369117, 0.1987855635987229, -0.14533603246124993, -0.16334072868597016, -0.052369977381939437, 0.014904286931394959, -0.2440882678882144], [0.12108727495744157, -0.714787344982596, 0.01632521838262752, 0.04437570556908449, -0.041199280304144284, 0.052984488452616, 0.03796520200156107, 0.2791785910964288, 0.11530429924056099, 0.12178223160398421 … -0.07621847481721669, 0.18353870423743013, -0.19066653731436745, -0.09423224997242206, 0.14596847781388494, -0.09747986927777111, 0.16041150122587072, -0.02296513951256738, 0.06786878373578588, 0.15296635978447756]], 0)
Now for the plain gradient descent, we have to modify the step (to a constant stepsize) and remove the default check whether the cost increases (setting debug
to []
). We also only look at the first 20 iterations to keep this example small in recorded values. We call
R3 = gradient_descent(
M,
f2,
grad_f,
data[1];
record=[:Iteration, :Count => RecordCount(), :Cost],
stepsize = ConstantStepsize(1.0),
stopping_criterion=StopAfterIteration(20),
debug=[],
return_state=true,
)
# Solver state for `Manopt.jl`s Gradient Descent
After 20 iterations
## Parameters
* retraction method: ExponentialRetraction()
## Stepsize
ConstantStepsize(1.0, relative)
## Stopping criterion
Max Iteration 20: reached
This indicates convergence: No
## Record
(Iteration = RecordGroup([RecordIteration(), RecordCount([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]), RecordCost()]),)
For :Cost
we already learned how to access them, the :Count =>
introduces the following action to obtain the :Count
. We can again access the whole sets of records
get_record(R3)
20-element Vector{Tuple{Int64, Int64, Float64}}:
(1, 0, 0.5808287253777765)
(2, 1, 0.5395268557323746)
(3, 2, 0.5333529073733115)
(4, 3, 0.5324514620174543)
(5, 4, 0.5323201743667151)
(6, 5, 0.5323010518577256)
(7, 6, 0.5322982658416161)
(8, 7, 0.532297859847447)
(9, 8, 0.5322978006725337)
(10, 9, 0.5322977920461375)
(11, 10, 0.5322977907883957)
(12, 11, 0.5322977906049865)
(13, 12, 0.5322977905782369)
(14, 13, 0.532297790574335)
(15, 14, 0.5322977905737657)
(16, 15, 0.5322977905736823)
(17, 16, 0.5322977905736703)
(18, 17, 0.5322977905736688)
(19, 18, 0.5322977905736683)
(20, 19, 0.5322977905736683)
this is equivalent to calling R[:Iteration]
. Note that since we introduced :Count
we can also access a single recorded value using
R3[:Iteration, :Count]
20-element Vector{Int64}:
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
and we see that the cost function is called once per iteration.
If we use this counting cost and run the default gradient descent with Armijo line search, we can infer how many Armijo line search backtracks are preformed:
f3 = MyCost(data)
MyCost{Vector{Vector{Float64}}}([[-0.054658825167894595, -0.5592077846510423, -0.04738273828111257, -0.04682080720921302, 0.12279468849667038, 0.07171438895366239, -0.12930045409417057, -0.22102081626380404, -0.31805333254577767, 0.0065859500152017645 … -0.21999168261518043, 0.19570142227077295, 0.340909965798364, -0.0310802190082894, -0.04674431076254687, -0.006088297671169996, 0.01576037011323387, -0.14523596850249543, 0.14526158060820338, 0.1972125856685378], [-0.08192376929745249, -0.5097715132187676, -0.008339904915541005, 0.07289741328038676, 0.11422036270613797, -0.11546739299835748, 0.2296996932628472, 0.1490467170835958, -0.11124820565850364, -0.11790721606521781 … -0.16421249630470344, -0.2450575844467715, -0.07570080850379841, -0.07426218324072491, -0.026520181327346338, 0.11555341205250205, -0.0292955762365121, -0.09012096853677576, -0.23470556634911574, -0.026214242996704013], [-0.22951484264859257, -0.6083825348640186, 0.14273766477054015, -0.11947823367023377, 0.05984293499234536, 0.058820835498203126, 0.07577331705863266, 0.1632847202946857, 0.20244385489915745, 0.04389826920203656 … 0.3222365119325929, 0.009728730325524067, -0.12094785371632395, -0.36322323926212824, -0.0689253407939657, 0.23356953371702974, 0.23489531397909744, 0.078303336494718, -0.14272984135578806, 0.07844539956202407], [-0.0012588500237817606, -0.29958740415089763, 0.036738459489123514, 0.20567651907595125, -0.1131046432541904, -0.06032435985370224, 0.3366633723165895, -0.1694687746143405, -0.001987171245125281, 0.04933779858684409 … -0.2399584473006256, 0.19889267065775063, 0.22468755918787048, 0.1780090580180643, 0.023703860700539356, -0.10212737517121755, 0.03807004103115319, -0.20569120952458983, -0.03257704254233959, 0.06925473452536687], [-0.035534309946938375, -0.06645560787329002, 0.14823972268208874, -0.23913346587232426, 0.038347027875883496, 0.10453333143286662, 0.050933995140290705, -0.12319549375687473, 0.12956684644537844, -0.23540367869989412 … -0.41471772859912864, -0.1418984610380257, 0.0038321446836859334, 0.23655566917750157, -0.17500681300994742, -0.039189751036839374, -0.08687860620942896, -0.11509948162959047, 0.11378233994840942, 0.38739450723013735], [-0.3122539912469438, -0.3101935557860296, 0.1733113629107006, 0.08968593616209351, -0.1836344261367962, -0.06480023695256802, 0.18165070013886545, 0.19618275767992124, -0.07956460275570058, 0.0325997354656551 … 0.2845492418767769, 0.17406455870721682, -0.053101230371568706, -0.1382082812981627, 0.005830071475508364, 0.16739264037923055, 0.034365814374995335, 0.09107702398753297, -0.1877250428700409, 0.05116494897806923], [-0.04159442361185588, -0.7768029783272633, 0.06303616666722486, 0.08070518925253539, -0.07396265237309446, -0.06008109299719321, 0.07977141629715745, 0.019511027129056415, 0.08629917589924847, -0.11156298867318722 … 0.0792587504128044, -0.016444383900170008, -0.181746064577005, -0.01888129512990984, -0.13523922089388968, 0.11358102175659832, 0.07929049608459493, 0.1689565359083833, 0.07673657951723721, -0.1128480905648813], [-0.21221814304651335, -0.5031823821503253, 0.010326342133992458, -0.12438192100961257, 0.04004758695231872, 0.2280527500843805, -0.2096243232022162, -0.16564828762420294, -0.28325749481138984, 0.17033534605245823 … -0.13599096505924074, 0.28437770540525625, 0.08424426798544583, -0.1266207606984139, 0.04917635557603396, -0.00012608938533809706, -0.04283220254770056, -0.08771365647566572, 0.14750169103093985, 0.11601120086036351], [0.10683290707435536, -0.17680836277740156, 0.23767458301899405, 0.12011180867097299, -0.029404774462600154, 0.11522028383799933, -0.3318174480974519, -0.17859266746938374, 0.04352373642537759, 0.2530382802667988 … 0.08879861736692073, -0.004412506987801729, 0.19786810509925895, -0.1397104682727044, 0.09482328498485094, 0.05108149065160893, -0.14578343506951633, 0.3167479772660438, 0.10422673169182732, 0.21573150015891313], [-0.024895624707466164, -0.7473912016432697, -0.1392537238944721, -0.14948896791465557, -0.09765393283580377, 0.04413059403279867, -0.13865379004720355, -0.071032040283992, 0.15604054722246585, -0.10744260463413555 … -0.14748067081342833, -0.14743635071251024, 0.0643591937981352, 0.16138827697852615, -0.12656652133603935, -0.06463635704869083, 0.14329582429103488, -0.01113113793821713, 0.29295387893749997, 0.06774523575259782] … [0.011874845316569967, -0.6910596618389588, 0.21275741439477827, -0.014042545524367437, -0.07883613103495014, -0.0021900966696246776, -0.033836430464220496, 0.2925813113264835, -0.04718187201980008, 0.03949680289730036 … 0.0867736586603294, 0.0404682510051544, -0.24779813848587257, -0.28631514602877145, -0.07211767532456789, -0.15072898498180473, 0.017855923621826746, -0.09795357710255254, -0.14755229203084924, 0.1305005778855436], [0.013457629515450426, -0.3750353654626534, 0.12349883726772073, 0.3521803555005319, 0.2475921439420274, 0.006088649842999206, 0.31203183112392907, -0.036869203979483754, -0.07475746464056504, -0.029297797064479717 … 0.16867368684091563, -0.09450564983271922, -0.0587273302122711, -0.1326667940553803, -0.25530237980444614, 0.37556905374043376, 0.04922612067677609, 0.2605362549983866, -0.21871556587505667, -0.22915883767386164], [0.03295085436260177, -0.971861604433394, 0.034748713521512035, -0.0494065013245799, -0.01767479281403355, 0.0465459739459587, 0.007470494722096038, 0.003227960072276129, 0.0058328596338402365, -0.037591237446692356 … 0.03205152122876297, 0.11331109854742015, 0.03044900529526686, 0.017971704993311105, -0.009329252062960229, -0.02939354719650879, 0.022088835776251863, -0.02546111553658854, -0.0026257225461427582, 0.005702111697172774], [0.06968243992532257, -0.7119502191435176, -0.18136614593117445, -0.1695926215673451, 0.01725015359973796, -0.00694164951158388, -0.34621134287344574, 0.024709256792651912, -0.1632255805999673, -0.2158226433583082 … -0.14153772108081458, -0.11256850346909901, 0.045109821764180706, -0.1162754336222613, -0.13221711766357983, 0.005365354776191061, 0.012750671705879105, -0.018208207549835407, 0.12458753932455452, -0.31843587960340897], [-0.19830349374441875, -0.6086693423968884, 0.08552341811170468, 0.35781519334042255, 0.15790663648524367, 0.02712571268324985, 0.09855601327331667, -0.05840653973421127, -0.09546429767790429, -0.13414717696055448 … -0.0430935804718714, 0.2678584478951765, 0.08780994289014614, 0.01613469379498457, 0.0516187906322884, -0.07383067566731401, -0.1481272738354552, -0.010532317187265649, 0.06555344745952187, -0.1506167863762911], [-0.04347524125197773, -0.6327981074196994, -0.221116680035191, 0.0282207467940456, -0.0855024881522933, 0.12821801740178346, 0.1779499563280024, -0.10247384887512365, 0.0396432464100116, -0.0582580338112627 … 0.1253893207083573, 0.09628202269764763, 0.3165295473947355, -0.14915034201394833, -0.1376727867817772, -0.004153096613530293, 0.09277957650773738, 0.05917264554031624, -0.12230262590034507, -0.19655728521529914], [-0.10173946348675116, -0.6475660153977272, 0.1260284619729566, -0.11933160462857616, -0.04774310633937567, 0.09093928358804217, 0.041662676324043114, -0.1264739543938265, 0.09605293126911392, -0.16790474428001648 … -0.04056684573478108, 0.09351665120940456, 0.15259195558799882, 0.0009949298312580497, 0.09461980828206303, 0.3067004514287283, 0.16129258773733715, -0.18893664085007542, -0.1806865244492513, 0.029319680436405825], [-0.251780954320053, -0.39147463259941456, -0.24359579328578626, 0.30179309757665723, 0.21658893985206484, 0.12304585275893232, 0.28281133086451704, 0.029187615341955325, 0.03616243507191924, 0.029375588909979152 … -0.08071746662465404, -0.2176101928258658, 0.20944684921170825, 0.043033273425352715, -0.040505542460853576, 0.17935596149079197, -0.08454569418519972, 0.0545941597033932, 0.12471741052450099, -0.24314124407858329], [0.28156471341150974, -0.6708572780452595, -0.1410302363738465, -0.08322589397277698, -0.022772599832907418, -0.04447265789199677, -0.016448068022011157, -0.07490911512503738, 0.2778432295769144, -0.10191899088372378 … -0.057272155080983836, 0.12817478092201395, 0.04623814480781884, -0.12184190164369117, 0.1987855635987229, -0.14533603246124993, -0.16334072868597016, -0.052369977381939437, 0.014904286931394959, -0.2440882678882144], [0.12108727495744157, -0.714787344982596, 0.01632521838262752, 0.04437570556908449, -0.041199280304144284, 0.052984488452616, 0.03796520200156107, 0.2791785910964288, 0.11530429924056099, 0.12178223160398421 … -0.07621847481721669, 0.18353870423743013, -0.19066653731436745, -0.09423224997242206, 0.14596847781388494, -0.09747986927777111, 0.16041150122587072, -0.02296513951256738, 0.06786878373578588, 0.15296635978447756]], 0)
To not get too many entries let’s just look at the first 20 iterations again
R4 = gradient_descent(
M,
f3,
grad_f,
data[1];
record=[:Count => RecordCount()],
return_state=true,
)
# Solver state for `Manopt.jl`s Gradient Descent
After 60 iterations
## Parameters
* retraction method: ExponentialRetraction()
## Stepsize
ArmijoLinesearch() with keyword parameters
* initial_stepsize = 1.0
* retraction_method = ExponentialRetraction()
* contraction_factor = 0.95
* sufficient_decrease = 0.1
## Stopping criterion
Stop When _one_ of the following are fulfilled:
Max Iteration 200: not reached
|grad f| < 1.0e-8: reached
Overall: reached
This indicates convergence: Yes
## Record
(Iteration = RecordGroup([RecordCount([25, 29, 33, 37, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 229, 232, 236, 240, 242, 246, 248, 254, 256])]),)
get_record(R4)
60-element Vector{Tuple{Int64}}:
(25,)
(29,)
(33,)
(37,)
(40,)
(44,)
(48,)
(52,)
(56,)
(60,)
(64,)
(68,)
(72,)
⋮
(216,)
(220,)
(224,)
(229,)
(232,)
(236,)
(240,)
(242,)
(246,)
(248,)
(254,)
(256,)
We can see that the number of cost function calls varies, depending on how many line search backtrack steps were required to obtain a good stepsize.