Notation overview

Since manifolds include a reasonable amount of elements and functions, the following list tries to keep an overview of used notation throughout Manifolds.jl. The order is alphabetical by name. They might be used in a plain form within the code or when referring to that code. This is for example the case with the calligraphic symbols.

Within the documented functions, the utf8 symbols are used whenever possible, as long as that renders correctly in $\TeX$ within this documentation.

SymbolDescriptionAlso usedComment
$\tau_p$action map by group element $p$$\mathrm{L}_p$, $\mathrm{R}_p$either left or right
$\times$Cartesian product of two manifoldssee ProductManifold
$^{\wedge}$(n-ary) Cartesian power of a manifoldsee PowerManifold
$T^*_p \mathcal M$the cotangent space at $p$
$\xi$a cotangent vector from $T^*_p \mathcal M$$\xi_1, \xi_2,\ldots,\eta,\zeta$sometimes written with base point $\xi_p$.
$\mathrm{d}\phi_p$differential of a map $\phi: \mathcal M \to \mathcal N$ at a point $p$$(\mathrm{d}\phi)_p$, $(\phi_*)_p$pushes tangent vectors in $T_p \mathcal M$ forward to $T_{\phi(p)} \mathcal N$
$n$dimension (of a manifold)$n_1,n_2,\ldots,m, \dim(\mathcal M)$for the real dimension sometimes also $\dim_{\mathbb R}(\mathcal M)$
$d(\cdot,\cdot)$(Riemannian) distance$d_{\mathcal M}(\cdot,\cdot)$
$F$a fiber
$\mathbb F$a fieldfield a manifold is based on, usually $\mathbb F \in \{\mathbb R,\mathbb C\}$
$\gamma$a geodesic$\gamma_{p;q}$, $\gamma_{p,X}$connecting two points $p,q$ or starting in $p$ with velocity $X$.
$\circ$a group operation
$\cdot^\mathrm{H}$Hermitian or conjugate transposed
$e$identity element of a group
$I_k$identity matrix of size $k\times k$
$\langle\cdot,\cdot\rangle$inner product (in $T_p \mathcal M$)$\langle\cdot,\cdot\rangle_p, g_p(\cdot,\cdot)$
$\mathfrak g$a Lie algebra
$\mathcal{G}$a (Lie) group
$\mathcal M$a manifold$\mathcal M_1, \mathcal M_2,\ldots,\mathcal N$
$\operatorname{Exp}$the matrix exponential
$\operatorname{Log}$the matrix logarithm
$\mathcal P_{q\gets p}X$parallel transportof the vector $X$ from $T_p\mathcal M$ to $T_q\mathcal M$
$p$a point on $\mathcal M$$p_1, p_2, \ldots,q$for 3 points one might use $x,y,z$
$\Xi$a set of tangent vectors$\{X_1,\ldots,X_n\}$
$T_p \mathcal M$the tangent space at $p$
$X$a tangent vector from $T_p \mathcal M$$X_1,X_2,\ldots,Y,Z$sometimes written with base point $X_p$
$\operatorname{tr}$trace (of a matrix)
$B$a vector bundle
$0_k$the $k\times k$ zero matrix.