Shape spaces
Shape spaces are spaces of $k$ points in $ℝ^n$ up to simultaneous action of a group on all points. The most commonly encountered are Kendall's pre-shape and shape spaces. In the case of the Kendall's pre-shape spaces the action is translation and scaling. In the case of the Kendall's shape spaces the action is translation, scaling and rotation.
using Manifolds, Plots
M = KendallsShapeSpace(2, 3)
# two random point on the shape space
p = [
    0.4385117672460505 -0.6877826444042382 0.24927087715818771
    -0.3830259932279294 0.35347460720654283 0.029551386021386548
]
q = [
    -0.42693314765896473 -0.3268567431952937 0.7537898908542584
    0.3054740561061169 -0.18962848284149897 -0.11584557326461796
]
# let's plot them as triples of points on a plane
fig = scatter(p[1,:], p[2,:], label="p", aspect_ratio=:equal)
scatter!(fig, q[1,:], q[2,:], label="q")A more extensive usage example is available in the hand_gestures.jl tutorial.
Manifolds.KendallsPreShapeSpace — TypeKendallsPreShapeSpace{T} <: AbstractSphere{ℝ}Kendall's pre-shape space of $k$ landmarks in $ℝ^n$ represented by n×k matrices. In each row the sum of elements of a matrix is equal to 0. The Frobenius norm of the matrix is equal to 1 [Ken84][Ken89].
The space can be interpreted as tuples of $k$ points in $ℝ^n$ up to simultaneous translation and scaling of all points, so this can be thought of as a quotient manifold.
Constructor
KendallsPreShapeSpace(n::Int, k::Int; parameter::Symbol=:type)See also
KendallsShapeSpace, esp. for the references
Manifolds.KendallsShapeSpace — TypeKendallsShapeSpace{T} <: AbstractDecoratorManifold{ℝ}Kendall's shape space, defined as quotient of a KendallsPreShapeSpace (represented by n×k matrices) modulo column wise application of a single rotation.
The space can be interpreted as tuples of $k$ points in $ℝ^n$ up to simultaneous translation and scaling and rotation of all points [Ken84][Ken89].
Constructor
KendallsShapeSpace(n::Int, k::Int; parameter::Symbol=:type)References
Provided functions
ManifoldsBase.check_point — Methodcheck_point(M::KendallsPreShapeSpace, p; atol=sqrt(max_eps(X, Y)), kwargs...)Check whether p is a valid point on KendallsPreShapeSpace, i.e. whether each row has zero mean. Other conditions are checked via embedding in ArraySphere.
ManifoldsBase.check_vector — Methodcheck_vector(M::KendallsPreShapeSpace, p, X; kwargs... )Check whether X is a valid tangent vector on KendallsPreShapeSpace, i.e. whether each row has zero mean. Other conditions are checked via embedding in ArraySphere.
ManifoldsBase.get_embedding — Methodget_embedding(M::KendallsPreShapeSpace)Return the space KendallsPreShapeSpace M is embedded in, i.e. ArraySphere of matrices of the same shape.
ManifoldsBase.manifold_dimension — Methodmanifold_dimension(M::KendallsPreShapeSpace)Return the dimension of the KendallsPreShapeSpace manifold M. The dimension is given by $n(k - 1) - 1$.
ManifoldsBase.project — Methodproject(M::KendallsPreShapeSpace, p, X)Project tangent vector X at point p from the embedding to KendallsPreShapeSpace by selecting the right element from the tangent space to orthogonal section representing the quotient manifold M. See Section 3.7 of [SK16] for details.
ManifoldsBase.project — Methodproject(M::KendallsPreShapeSpace, p)Project point p from the embedding to KendallsPreShapeSpace by selecting the right element from the orthogonal section representing the quotient manifold M. See Section 3.7 of [SK16] for details.
The method computes the mean of the landmarks and moves them to make their mean zero; afterwards the Frobenius norm of the landmarks (as a matrix) is normalised to fix the scaling.
Base.exp — Methodexp(M::KendallsShapeSpace, p, X)Compute the exponential map on KendallsShapeSpace M. See [GMTP21] for discussion about its computation.
Base.log — Methodlog(M::KendallsShapeSpace, p, q)Compute the logarithmic map on KendallsShapeSpace M. See the [exp](@ref exp(::KendallsShapeSpace, ::Any, ::Any)onential map for more details
Base.rand — Methodrand(::KendallsShapeSpace; vector_at=nothing)When vector_at is nothing, return a random point x on the KendallsShapeSpace manifold M by generating a random point in the embedding.
When vector_at is not nothing, return a random vector from the tangent space with mean zero and standard deviation σ.
ManifoldsBase.get_embedding — Methodget_embedding(M::KendallsShapeSpace)Get the manifold in which KendallsShapeSpace M is embedded, i.e. KendallsPreShapeSpace of matrices of the same shape.
ManifoldsBase.get_total_space — Methodget_total_space(::KendallsShapeSpace)Return the total space of the KendallsShapeSpace manifold, which is the KendallsPreShapeSpace manifold.
ManifoldsBase.horizontal_component — Methodhorizontal_component(::KendallsShapeSpace, p, X)Compute the horizontal component of tangent vector X at p on KendallsShapeSpace M. See [GMTP21], Section 2.3 for details.
ManifoldsBase.is_flat — Methodis_flat(::KendallsShapeSpace)Return false. KendallsShapeSpace is not a flat manifold.
ManifoldsBase.manifold_dimension — Methodmanifold_dimension(M::KendallsShapeSpace)Return the dimension of the KendallsShapeSpace manifold M. The dimension is given by $n(k - 1) - 1 - n(n - 1)/2$ in the typical case where $k \geq n+1$, and $(k + 1)(k - 2) / 2$ otherwise, unless $k$ is equal to 1, in which case the dimension is 0. See [Ken84] for a discussion of the over-dimensioned case.
Literature
- [GMTP21]
 - N. Guigui, E. Maignant, A. Trouvé and X. Pennec. Parallel Transport on Kendall Shape Spaces. In: Geometric Science of Information (SPringer Cham, 2021); pp. 103–110.
 - [Ken84]
 - D. G. Kendall. Shape Manifolds, Procrustean Metrics, and Complex Projective Spaces. Bulletin of the London Mathematical Society 16, 81–121 (1984).
 - [Ken89]
 - D. G. Kendall. A Survey of the Statistical Theory of Shape. Statistical Sciences 4, 87–99 (1989).
 - [SK16]
 - A. Srivastava and E. P. Klassen. Functional and Shape Data Analysis (Springer New York, 2016).