The Segre manifold
Manifolds.Segre
β TypeSegre{π½,V} <: AbstractManifold{π½}
The Segre manifold
\[ \mathcal{S} = \operatorname{Seg}(π½^{n_1} \times \dots \times π½^{n_d})\]
is the set of rank-one tensors in $π½^{n_1} \otimes \dots \otimes π½^{n_d}$.
When $π½ = β$, the Segre manifold is a normal Riemannian covering of
\[ \mathcal{P} = β^{+} \times \mathbb{S}^{n_1 - 1} \times \dots \times \mathbb{S}^{n_d - 1}\]
equipped with a warped product metric. The tuple $(n_1, \dots, n_d)$ is called the valence of the manifold.
The geometry of the Segre manifold is summarized in [JSVV24]. It is named after Corrado Segre(1863β1924).
Constructor
Segre(n::Int...; field::AbstractNumbers=β)
Generate a valence (n, ...)
Segre manifold. Segre(n)
is the same as $\mathbb{R}^{n} \setminus \{ 0 \}$.
Base.exp
β Methodexp(M::Segre{β, V}, p, X)
Exponential map on the Segre manifold.
Let $p β (Ξ», x_1, β¦, x_d) β \mathcal{S}$ and $X = (Ξ½, u_1, β¦, u_d) β T_p \mathcal{S}$. The exponential map is given by
\[ \operatorname{exp}_p(X) β \left( \sqrt{(Ξ» + Ξ½)^2 + (Ξ» m)^2},\\ x_1 \cos\mathopen{\Big(} \frac{f \lVert u_1 \rVert_{x_1}}{m} \mathclose{\Big)} + \frac{u_1}{\lVert u_1 \rVert_{x_1}} \sin\mathopen{\Big(} \frac{f \lVert u_1 \rVert_{x_1}}{m} \mathclose{\Big)},\\ β¦,\\ x_d \cos\mathopen{\Big(} \frac{f \lVert u_d \rVert_{x_d}}{m} \mathclose{\Big)} + \frac{u_d}{\lVert u_d \rVert_{x_d}} \sin\mathopen{\Big(} \frac{f \lVert u_d \rVert_{x_d}}{m} \mathclose{\Big)} \right),\]
where
\[ \begin{aligned} f &= \frac{\pi}{2} - \tan^{-1}\mathopen{\Big(} \frac{Ξ» + Ξ½}{Ξ» m} \mathclose{\Big)},\\ m &= \sqrt{\lVert u_1 \rVert_{x_1}^2 + β¦ + \lVert u_d \rVert_{x_d}^2}. \end{aligned}\]
If $m = 0$ and $-Ξ» < Ξ½$, then $\operatorname{exp}_p(v) = p + X$.
The formula is derived in proposition 3.1 in [JSVV24].
Base.log
β Methodlog(M::Segre{β, V}, p, q)
Logarithmic map on the Segre manifold.
Let $p β (Ξ», x_1, β¦, x_d)$, $q β (ΞΌ, y_1, β¦, y_d) β \mathcal{S}$. Assume $p$ and $q$ are connected by a geodesic.
Let
\[ m = \sqrt{\sphericalangle(x_1, y_1)^2 + β¦ + \sphericalangle(x_d, y_d)^2}\]
and assume $(ΞΌ, y_1, β¦, y_d)$ is the representative of $q$ that minimizes $m$. Then
\[ \operatorname{log}_p(q) = \left( \mu \cos{m} - \lambda, (y_1 - β¨x_1, y_1β© x_1) \frac{\mu \sphericalangle(x_1, y_1) \sin{m}}{\lambda m \sin{\sphericalangle(x_1, y_1)}}, \dots, (y_d - β¨x_d, y_dβ© x_d) \frac{\mu \sphericalangle(x_d, y_d) \sin{m}}{\lambda m \sin{\sphericalangle(x_d, y_d)}} \right).\]
The formula is derived in theorem 4.4 in [JSVV24].
Base.rand
β Methodrand(M::Segre{β, V}; vector_at=nothing)
If vector_at
is nothing
, return a random point on
\[ β^{+} Γ \mathbb{S}^{n_1 - 1} Γβ―Γ \mathbb{S}^{n_d - 1}\]
from a log-normal distribution on $β^{+}$ and a uniform distribution on $\mathbb{S}^{n_1 - 1} Γβ―Γ \mathbb{S}^{n_d - 1}$.
If vector_at
is not nothing
, return a random tangent vector from a normal distribution on the tangent space.
Manifolds.closest_representative!
β Methodclosest_representative!(M::Segre{β, V}, p, q)
$\mathcal{S}$ is a $2^d$-sheeted Riemannian covering of
\[ \mathcal{P} = β^{+} \times \mathbb{S}^{n_1 - 1} \times \dots \times \mathbb{S}^{n_d - 1}\]
with a warped product metric. Every equivalence class $q \in \mathcal{S}$ has $2^d$ representatives in $\mathcal{P}$. closest_representative!(M, q, p)
changes representative of q
to the one that is closest to p
in $\mathcal{P}$.
Manifolds.connected_by_geodesic
β Methodconnected_by_geodesic(M::Segre{β, V}, p, q)
$\mathcal{S}$ is not a complete manifold, i.e. not every pair p
and q
of points are connected by a geodesic in $\mathcal{S}$. connected_by_geodesic(M, p, q)
returns true
if two points, p
and q
, are connected by a geodesic, and otherwise returns false
.
Manifolds.spherical_angle_sum
β Methodspherical_angle_sum(M::Segre{β, V}, p, q)
Let $p β (Ξ», x_1, β¦, x_d)$, $q β (ΞΌ, y_1, β¦, y_d) β \mathcal{S}$. Then this is
\[ \sqrt{\sphericalangle(x_1, y_1)^2 + β¦ + \sphericalangle(x_d, y_d)^2},\]
where $\sphericalangle(x_i, y_i)$ is the distance between $x_i$ and $y_i$ on the sphere $\mathbb{S}^{n_i - 1}$.
ManifoldsBase.distance
β Methoddistance(M::Segre{β, V}, p, q)
Riemannian distance between two points p
and q
on the Segre manifold.
Assume $p β (Ξ», x_1, β¦, x_d)$, $q β (ΞΌ, y_1, β¦, y_d) β \mathcal{S}$ are connected by a geodesic. Let
\[ m = \sqrt{\sphericalangle(x_1, y_1)^2 + β¦ + \sphericalangle(x_d, y_d)^2}\]
and assume $(ΞΌ, y_1, β¦, y_d)$ is the representation of $q$ that minimizes $m$. Then
\[ \operatorname{dist}_{\mathcal{S}}(p, q) = \sqrt{λ^2 - 2 λμ\cos(m) + μ^2}.\]
ManifoldsBase.embed!
β Methodembed!(M::Segre{π½, V}, p, X)
Embed tangent vector $X = (Ξ½, u_1, β¦, u_d)$ at $p β (Ξ», x_1, β¦, x_d)$ in $π½^{n_1 Γβ―Γ n_d}$ using the Kronecker product
\[ (Ξ½, u_1, β¦, u_d) β¦ Ξ½ x_1 ββ―β x_d + Ξ» u_1 β x_2 ββ―β x_d + β¦ + Ξ» x_1 ββ―β x_{d - 1} β u_d.\]
ManifoldsBase.embed
β Methodembed(M::Segre{π½, V}, p)
embed!(M::Segre{π½, V}, q, p)
Embed $p β (Ξ», x_1, β¦, x_d)$ in $π½^{n_1 Γβ―Γ n_d}$ using the Kronecker product
\[ (Ξ», x_1, β¦, x_d) β¦ Ξ» x_1 ββ―β x_d.\]
ManifoldsBase.get_coordinates
β Methodget_coordinates(M::Segre{π½, V}, p, X, ::DefaultOrthonormalBasis; kwargs...)
Get coordinates of X
in the tangent space $T_{(Ξ», x_1, β¦, x_d)} \mathcal{S} = \mathbb{R} Γ T_{x_1} \mathbb{S}^{n_1 - 1} Γβ¦Γ T_{x_d} \mathbb{S}^{n_d - 1}$ using a DefaultOrthonormalBasis
on each factor.
ManifoldsBase.get_embedding
β Methodget_embedding(M::Segre{π½,V})
Return the embedding of the Segre
manifold $\mathcal{S}$, which is $π½^{n_1 Γβ―Γ n_d}$.
ManifoldsBase.get_vector
β Methodget_vector( M::Segre{π½, V}, p, c, DefaultOrthonormalBasis; kwargs...)
Get tangent vector X
from coordinates in the tangent space $T_{(Ξ», x_1, β¦, x_d)} \mathcal{S} = \mathbb{R} Γ T_{x_1} \mathbb{S}^{n_1 - 1} Γβ―Γ T_{x_d} \mathbb{S}^{n_d - 1}$ using a DefaultOrthonormalBasis
on each factor.
ManifoldsBase.inner
β Methodinner(M::Segre{β, V}, p, X, Y,)
Inner product between two tangent vectors $X = (Ξ½, u_1, β¦, u_d)$ and $Y = (ΞΎ, v_1, β¦, v_d)$ at $p β (Ξ», x_1, \dots, x_d)$. This inner product is obtained by embedding the Segre manifold in the space of tensors equipped with the Euclidean metric:
\[ \langle X, Y \rangle_{p} = \nu \xi + \lambda^2 (\langle u_1, v_1 \rangle_{x_1} + \dots + \langle u_d, v_d \rangle_{x_d}),\]
where $Ξ½, ΞΎ β T_{Ξ»} β^{+} = β$ and $u_i$, $v_i β T_{x_i} \mathbb{S}^{n_i - 1} β β^{n_i}$.
ManifoldsBase.is_point
β Methodis_point(M::Segre{β, V}, p; kwargs...)
Check whether p
is a valid point on M
, i.e. p[1]
is a singleton containing a positive number and p[i + 1]
is a point on Sphere(V[i])
. The tolerance can be set using the kwargs...
.
ManifoldsBase.is_vector
β Methodis_vector(M::Segre{β, V}, p, X, kwargs...)
Check whether X
is a tangent vector to p
on M
, i.e. X
has to be of same dimension as p
and orthogonal to p
. The tolerance can be set using the kwargs...
.
ManifoldsBase.riemann_tensor
β Methodriemann_tensor(M::Segre{β, V}, p, X, Y, Z)
Riemann tensor of the Segre manifold at $p$.
$\mathcal{S}$ is locally a warped product of $β^{+}$ and $\mathbb{S}^{n_1 - 1} Γβ―Γ \mathbb{S}^{n_d - 1}$. If $p β (Ξ», x_1, β¦, x_d) β \mathcal{S}$ and $X$, $Y$, $Z β T_p (\mathbb{S}^{n_1 - 1} Γβ―Γ \mathbb{S}^{n_d - 1}) β T_p \mathcal{S}$, then
\[ R_{\mathcal{S}}(X, Y) Z = R_{\mathbb{S}^{n_1 - 1} Γβ―Γ \mathbb{S}^{n_d - 1}}(X, Y) Z + Ξ»^{-2}(β¨X, Zβ©_p Y - β¨Y, Zβ©_p X).\]
$R_{\mathcal{S}}$ is zero in the remaining (orthogonal) directions.
ManifoldsBase.sectional_curvature
β Methodsectional_curvature(M::Segre{β, V}, p, u, v)
Sectional curvature of the Segre manifold at $p$.
$\mathcal{S}$ is locally a warped product of $β^{+}$ and $\mathbb{S}^{n_1 - 1} Γβ―Γ \mathbb{S}^{n_d - 1}$ If $p β (Ξ», x_1, β¦, x_d) β \mathcal{S}$, $u_i β T_{x_i} \mathbb{S}^{n_i - 1}$, and $v_j β T_{x_j} \mathbb{S}^{n_j - 1}$, then
\[ K_{\mathcal{S}}(u_i, v_j) = \frac{\delta_{i j} - 1}{\lambda^2}.\]
$K_{\mathcal{S}}$ is zero in the remaining (orthogonal) directions.
A warped metric
Manifolds.WarpedMetric
β TypeWarpedMetric{A} <: AbstractMetric
The $A$-warped metric on the Segre manifold $\mathcal{S}$ is a generalization of the Euclidean metric on $\mathcal{S}$. We denote this manifold by $\mathcal{S}_A$.
Similarly to $\mathcal{S}$, when $π½ = β$, $\mathcal{S}_A$ is a normal Riemannian covering of the product manifold
\[ β^{+} Γ \mathbb{S}^{n_1 - 1} Γβ―Γ \mathbb{S}^{n_d - 1}\]
with a warped product metric, but the warping function now depends on the warping factor $A$. $A = 1$ corresponds to the usual Segre manifold. The Segre manifold is a cone in the sense that if $p \in \mathcal{S}$, then $r p \in \mathcal{S}$ for all $r \neq 0$. The tangent subspace at $p$ defined $\mathrm{d} (r p) / \mathrm{d} r$ is called the radial direction. $A < 1$ puts less weight on the directions orthogonal to the radial direction compared to $\mathcal{S}$, while $A > 1$ puts more weight on those directions.
The geometry is summarized in [JSVV24].
Constructor
WarpedMetric(A::Real)
Generate a warped product metric with warping factor A
.
Base.exp
β Methodexp(M::MetricManifold{β, Segre{β, V}, WarpedMetric{A}}, p, X)
Exponential map on the warped Segre manifold.
Let $p β (Ξ», x_1,β¦, x_d) β \mathcal{S}_A$ and $X = (Ξ½, u_1,β¦, u_d) β T_p \mathcal{S}_A$. Then the exponential map is given by
\[ \operatorname{exp}_p(X) β \left( \sqrt{(Ξ» + Ξ½)^2 + (Ξ» A m)^2},\\ x_1 \cos\mathopen{\Big(} \frac{f \lVert u_1 \rVert_{x_1}}{A m} \mathclose{\Big)} + \frac{u_1}{\lVert u_1 \rVert_{x_1}} \sin\mathopen{\Big(} \frac{f \lVert u_1 \rVert_{x_1}}{A m} \mathclose{\Big)},\\ β¦,\\ x_d \cos\mathopen{\Big(} \frac{f \lVert u_d \rVert_{x_d}}{A m} \mathclose{\Big)} + \frac{u_d}{\lVert u_d \rVert_{x_d}} \sin\mathopen{\Big(} \frac{f \lVert u_d \rVert_{x_d}}{A m} \mathclose{\Big)} \right),\]
where
\[ \begin{aligned} f &= \frac{\pi}{2} - \tan^{-1}\mathopen{\Big(} \frac{Ξ» + Ξ½}{Ξ» A m} \mathclose{\Big)},\\ m &= \sqrt{\lVert u_1 \rVert_{x_1}^2 + β¦ + \lVert u_d \rVert_{x_d}^2}. \end{aligned}\]
If $m = 0$ and $-Ξ» < Ξ½$, then $\operatorname{exp}_p(v) = p + X$.
The formula is derived in proposition 3.1 in [JSVV24].
Base.log
β Methodlog(M::MetricManifold{β, Segre{β,V}, WarpedMetric{A}}, p, q)
Logarithmic map on the warped Segre manifold.
Let $p β (Ξ», x_1,β¦, x_d)$, $q β (ΞΌ, y_1,β¦, y_d) β \mathcal{S}_A$. Assume $p$ and $q$ are connected by a geodesic. Let
\[ m = \sqrt{\sphericalangle(x_1, y_1)^2 +β¦ + \sphericalangle(x_d, y_d)^2}\]
and assume $(ΞΌ, y_1,β¦, y_d)$ is the representative of $q$ that minimizes $m$. Then
\[ \operatorname{log}_p(q) = \left( \mu \cos{m} - \lambda, (y_1 - β¨x_1, y_1β© x_1) \frac{\mu \sphericalangle(x_1, y_1) \sin(A m)}{\lambda A m \sin{\sphericalangle(x_1, y_1)}}, \dots, (y_d - β¨x_d, y_dβ© x_d) \frac{\mu \sphericalangle(x_d, y_d) \sin(A m)}{\lambda A m \sin{\sphericalangle(x_d, y_d)}} \right).\]
The formula is derived in theorem 4.4 in [JSVV24].
ManifoldsBase.distance
β Methoddistance(M::MetricManifold{β, Segre{β,V}, WarpedMetric{A}}, p, q)
Riemannian distance between two points p
and q
on the warped Segre manifold.
Assume $p β (Ξ», x_1,β¦, x_d)$, $q β (ΞΌ, y_1,β¦, y_d) β \mathcal{S}_A$ are connected by a geodesic. Let
\[ m = \sqrt{\sphericalangle(x_1, y_1)^2 +β¦ + \sphericalangle(x_d, y_d)^2}\]
and assume $(ΞΌ, y_1,β¦, y_d)$ is the representation of $q$ that minimizes $m$. Then
\[ \operatorname{dist}_{\mathcal{S}_A}(p, q) = \sqrt{Ξ»^2 - 2 Ξ» ΞΌ \cos(A m) + ΞΌ^2}.\]
ManifoldsBase.get_coordinates
β Methodget_coordinates(M::Segre{π½, V}, p, v, ::DefaultOrthonormalBasis; kwargs...)
Get coordinates of X
in the tangent space $T_{(Ξ», x_1,β¦, x_d)} \mathcal{S}_A = \mathbb{R} Γ T_{x_1} \mathbb{S}^{n_1 - 1} Γβ―Γ T_{x_d} \mathbb{S}^{n_d - 1}$ using a DefaultOrthonormalBasis
on each factor.
ManifoldsBase.get_vector
β Methodget_vector(M::Segre{π½, V}, p, c, ::DefaultOrthonormalBasis; kwargs...)
Get tangent vector X
from coordinates in the tangent space $T_{(Ξ», x_1,β¦, x_d)} \mathcal{S}_A = \mathbb{R} Γ T_{x_1} \mathbb{S}^{n_1 - 1} Γβ―Γ T_{x_d} \mathbb{S}^{n_d - 1}$ using a DefaultOrthonormalBasis
on each factor.
ManifoldsBase.inner
β Methodinner(M::MetricManifold{β, Segre{β, V}, WarpedMetric{A}}, p, X, Y)
Inner product between two tangent vectors $X = (Ξ½, u_1,β¦, u_d)$ and $Y = (ΞΎ, v_1,β¦, v_d)$ at $p \doteq (Ξ», x_1,β¦, x_d)$:
\[ β¨X, Yβ©_{p} = Ξ½ ΞΎ + (A Ξ»)^2 (β¨ u_1, v_1 β©_{x_1} +β¦ + β¨u_d, v_dβ©_{x_d}),\]
where $Ξ½$, $ΞΎ β T_{Ξ»} β^{+} = β$ and $u_i$, $v_i β T_{x_i} \mathbb{S}^{n_i - 1} \subset β^{n_i}$.
ManifoldsBase.riemann_tensor
β Methodriemann_tensor(M::MetricManifold{β, Segre{β,V}, WarpedMetric{A}}, p, X, Y)
Riemann tensor of the warped Segre manifold at $p$.
$\mathcal{S}_A$ is locally a warped product of $β^{+}$ and $\mathbb{S}^{n_1 - 1} Γβ―Γ \mathbb{S}^{n_d - 1}$. If $p β (Ξ», x_1,β¦, x_d) β \mathcal{S}_A$ and $X$, $Y$, $Z β T_{(x_1,β¦, x_d)} (\mathbb{S}^{n_1 - 1} Γβ―Γ \mathbb{S}^{n_d - 1}) \subset T_p \mathcal{S}_A$ then
\[ R_{\mathcal{S}_A}(X, Y) Z = R_{\mathbb{S}^{n_1 - 1} Γβ―Γ \mathbb{S}^{n_d - 1}}(X, Y) Z + Ξ»^{-2}(β¨ X, Z β©_{p} Y - β¨ Y, Z β©_{p} X).\]
$R_{\mathcal{S}_A}$ is zero in the remaining (orthogonal) directions.
ManifoldsBase.sectional_curvature
β Methodsectional_curvature(M::MetricManifold{β, Segre{β,V}, WarpedMetric{A}}, p, X, Y)
Sectional curvature of the warped Segre manifold at $p$.
$\mathcal{S}_A$ is locally a warped product of $β^{+}$ and $\mathbb{S}^{n_1 - 1} Γβ―Γ \mathbb{S}^{n_d - 1}$ If $p = (Ξ», x_1,β¦, x_d) β \mathcal{S}$, $u_i β T_{x_i} \mathbb{S}^{n_i - 1}$, and $v_j β T_{x_j} \mathbb{S}^{n_j - 1}$, then
\[ K_{\mathcal{S}_A}(u_i, v_j) = \frac{A^{-2} \delta_{i j} - 1}{Ξ»^{2}}.\]
$K_{\mathcal{S}_A}$ is zero in the remaining (orthogonal) directions.
Literature
- [JSVV24]
- S.Β Jacobsson, L.Β Swijsen, J.Β V.Β Veken and N.Β Vannieuwenhoven. Warped geometries of Segre-Veronese manifolds (2024), arXiv:2410.00664 [math.NA].