Product manifold
Product manifold $\mathcal M = \mathcal{M}_1 × \mathcal{M}_2 × … × \mathcal{M}_n$ of manifolds $\mathcal{M}_1, \mathcal{M}_2, …, \mathcal{M}_n$. Points on the product manifold can be constructed using ArrayPartition
(from RecursiveArrayTools.jl
) with canonical projections $Π_i : \mathcal{M} → \mathcal{M}_i$ for $i ∈ 1, 2, …, n$ provided by submanifold_component
.
ManifoldDiff.riemannian_Hessian
— MethodY = riemannian_Hessian(M::ProductManifold, p, G, H, X)
riemannian_Hessian!(M::ProductManifold, Y, p, G, H, X)
Compute the Riemannian Hessian $\operatorname{Hess} f(p)[X]$ given the Euclidean gradient $∇ f(\tilde p)$ in G
and the Euclidean Hessian $∇^2 f(\tilde p)[\tilde X]$ in H
, where $\tilde p, \tilde X$ are the representations of $p,X$ in the embedding,.
On a product manifold, this decouples and can be computed elementwise.
Manifolds.flat
— Methodflat(M::ProductManifold, p, X::FVector{TangentSpaceType})
use the musical isomorphism to transform the tangent vector X
from the tangent space at p
on the ProductManifold
M
to a cotangent vector. This can be done elementwise for every entry of X
(with respect to the corresponding entry in p
) separately.
Manifolds.manifold_volume
— Methodmanifold_volume(M::ProductManifold)
Return the volume of ProductManifold
M
, i.e. product of volumes of the manifolds M
is constructed from.
Manifolds.sharp
— Methodsharp(M::ProductManifold, p, ξ::FVector{CotangentSpaceType})
Use the musical isomorphism to transform the cotangent vector ξ
from the tangent space at p
on the ProductManifold
M
to a tangent vector. This can be done elementwise for every entry of ξ
(and p
) separately
Manifolds.volume_density
— Methodvolume_density(M::ProductManifold, p, X)
Return volume density on the ProductManifold
M
, i.e. product of constituent volume densities.