Lorentzian Manifold
The Lorentz manifold is a pseudo-Riemannian manifold. It is named after the Dutch physicist Hendrik Lorentz (1853–1928). The default LorentzMetric
is the MinkowskiMetric
named after the German mathematician Hermann Minkowski (1864–1909).
Within Manifolds.jl
it is used as the embedding of the Hyperbolic
space.
Manifolds.Lorentz
— TypeLorentz{T} = MetricManifold{Euclidean{T,ℝ},LorentzMetric}
The Lorentz manifold (or Lorentzian) is a pseudo-Riemannian manifold.
Constructor
Lorentz(n[, metric=MinkowskiMetric()])
Generate the Lorentz manifold of dimension n
with the LorentzMetric
m
, which is by default set to the MinkowskiMetric
.
Manifolds.LorentzMetric
— TypeLorentzMetric <: AbstractMetric
Abstract type for Lorentz metrics, which have a single time dimension. These metrics assume the spacelike convention with the time dimension being last, giving the signature $(++...+-)$.
Manifolds.MinkowskiMetric
— TypeMinkowskiMetric <: LorentzMetric
As a special metric of signature $(++...+-)$, i.e. a LorentzMetric
, see minkowski_metric
for the formula.
Manifolds.minkowski_metric
— Methodminkowski_metric(a, b)
Compute the minkowski metric on $\mathbb R^n$ is given by
\[⟨a,b⟩_{\mathrm{M}} = -a_{n}b_{n} + \displaystyle\sum_{k=1}^{n-1} a_kb_k.\]