Cholesky space
The Cholesky space is a Riemannian manifold on the lower triangular matrices. Its metric is based on the cholesky decomposition. The CholeskySpace
is used to define the LogCholeskyMetric
on the manifold of SymmetricPositiveDefinite
matrices.
Manifolds.CholeskySpace
โ TypeCholeskySpace{T} <: AbstractManifold{โ}
The manifold of lower triangular matrices with positive diagonal and a metric based on the Cholesky decomposition. The formulae for this manifold are for example summarized in Table 1 of [Lin19].
Constructor
CholeskySpace(n; parameter::Symbol=:type)
Generate the manifold of $nรn$ lower triangular matrices with positive diagonal.
Base.exp
โ Methodexp(M::CholeskySpace, p, X)
Compute the exponential map on the CholeskySpace
M
emanating from the lower triangular matrix with positive diagonal p
towards the lower triangular matrix X
The formula reads
\[\exp_p X = โ p โ + โ X โ + \operatorname{diag}(p) \operatorname{diag}(p)\exp\bigl( \operatorname{diag}(X)\operatorname{diag}(p)^{-1}\bigr),\]
where $โโ โ$ denotes the strictly lower triangular matrix, and $\operatorname{diag}$ extracts the diagonal matrix.
Base.log
โ Methodlog(M::CholeskySpace, X, p, q)
Compute the logarithmic map on the CholeskySpace
M
for the geodesic emanating from the lower triangular matrix with positive diagonal p
towards q
. The formula reads
\[\log_p q = โ p โ - โ q โ + \operatorname{diag}(p)\log\bigl(\operatorname{diag}(q)\operatorname{diag}(p)^{-1}\bigr),\]
where $โโ โ$ denotes the strictly lower triangular matrix, and $\operatorname{diag}$ extracts the diagonal matrix.
ManifoldsBase.check_point
โ Methodcheck_point(M::CholeskySpace, p; kwargs...)
Check whether the matrix p
lies on the CholeskySpace
M
, i.e. it's size fits the manifold, it is a lower triangular matrix and has positive entries on the diagonal. The tolerance for the tests can be set using the kwargs...
.
ManifoldsBase.check_vector
โ Methodcheck_vector(M::CholeskySpace, p, X; kwargs... )
Check whether v
is a tangent vector to p
on the CholeskySpace
M
, i.e. after check_point
(M,p)
, X
has to have the same dimension as p
and a symmetric matrix. The tolerance for the tests can be set using the kwargs...
.
ManifoldsBase.distance
โ Methoddistance(M::CholeskySpace, p, q)
Compute the Riemannian distance on the CholeskySpace
M
between two matrices p
, q
that are lower triangular with positive diagonal. The formula reads
\[d_{\mathcal M}(p,q) = \sqrt{\sum_{i>j} (p_{ij}-q_{ij})^2 + \sum_{j=1}^m (\log p_{jj} - \log q_{jj})^2 }\]
ManifoldsBase.inner
โ Methodinner(M::CholeskySpace, p, X, Y)
Compute the inner product on the CholeskySpace
M
at the lower triangular matrix with positive diagonal p
and the two tangent vectors X
,Y
, i.e they are both lower triangular matrices with arbitrary diagonal. The formula reads
\[g_p(X,Y) = \sum_{i>j} X_{ij}Y_{ij} + \sum_{j=1}^m X_{ii}Y_{ii}p_{ii}^{-2}\]
ManifoldsBase.is_flat
โ Methodis_flat(::CholeskySpace)
Return true. CholeskySpace
is a flat manifold. See Proposition 8 of [Lin19].
ManifoldsBase.manifold_dimension
โ Methodmanifold_dimension(M::CholeskySpace)
Return the manifold dimension for the CholeskySpace
M
, i.e.
\[ \dim(\mathcal M) = \frac{N(N+1)}{2}.\]
ManifoldsBase.parallel_transport_to
โ Methodparallel_transport_to(M::CholeskySpace, p, X, q)
Parallely transport the tangent vector X
at p
along the geodesic to q
on the CholeskySpace
manifold M
. The formula reads
\[\mathcal P_{qโp}(X) = โ X โ + \operatorname{diag}(q)\operatorname{diag}(p)^{-1}\operatorname{diag}(X),\]
where $โโ โ$ denotes the strictly lower triangular matrix, and $\operatorname{diag}$ extracts the diagonal matrix.
ManifoldsBase.representation_size
โ Methodrepresentation_size(M::CholeskySpace)
Return the representation size for the CholeskySpace
{N}
M
, i.e. (N,N)
.
ManifoldsBase.zero_vector
โ Methodzero_vector(M::CholeskySpace, p)
Return the zero tangent vector on the CholeskySpace
M
at p
.