Notation on Lie groups

In this package,the notation introduced in Manifolds.jl Notation is used with the following additional parts.

SymbolDescriptionAlso usedComment
$α$a general group action, when it is not specified whether it is a left ($α=σ$) or right ($α=τ$) action.
$∘$a group operation
$c_g:\mathcal G → \mathcal G$the conjugation map (with g)
$Df(p)[X]$the differential of a map f at point p in direction X
$\mathrm{d}f$the differential of a map f as a function on the Lie group and the differential on the Lie algebra.
$\mathrm{D}_af$the differential of a map f. An index is used to indicate a certain parameter. If $f$ is defined on or maps into the Lie group, this differential indicates the one with respect to tangent spaces
$\mathrm{e}$identity element of a group
$\exp_{\mathcal G}(X)$The Lie group exponential function
$\exp_g(X)$The Lie group exponential map (w.r.t. a Cartan Schouten connection)
$g, h, k$elements on a (Lie) group. Sometimes called points.$g_1, g_2, ...$
$\mathfrak g$a Lie algebra
$\mathcal{G}$a Lie group
$λ_g: \mathcal G → \mathcal G$the left group operation map $λ_g(h) = g∘h$
$\log_{\mathcal G}(g)$The Lie group logarithmic function
$\log_g(h)$The Lie group logarithmic map (w.r.t. a Cartan Schouten connection)
$α: \mathcal M → \mathcal G → \mathcal M$a (general) group action
$ρ_g: \mathcal G → \mathcal G$the right group operation map $ρ_g(h) = h∘g$
$σ: \mathcal G × \mathcal M → \mathcal M$a left group action$σ_g(p)$ to emphasize a fixed group element
$τ: \mathcal G × \mathcal M → \mathcal M$a right group action$σ_\mathrm{R}$$τ_g(p)$ to emphasize a fixed group element