Notation on Lie groups

In this package,the notation introduced in Manifolds.jl Notation is used with the following additional parts.

SymbolDescriptionAlso usedComment
$∘$a group operation
$c_g:\mathcal G → \mathcal G$the conjugation map (with g)
$\mathrm{e}$identity element of a group
$g, h, k$elements on a (Lie) group. Sometimes called points.$g_1, g_2, ...$
$\mathfrak g$a Lie algebra
$\mathcal{G}$a (Lie) group
$λ_g: \mathcal G → \mathcal G$the left group operation map $λ_g(h) = g∘h$
$ρ_g: \mathcal G → \mathcal G$the right group operation map $ρ_g(h) = h∘g$
$σ: \mathcal G × \mathcal M$a left group action$σ_g(p)$ to emphasize a fixed group element
$τ: \mathcal M × \mathcal G$a right group action$σ_\mathrm{R}$$τ_g(p)$ to emphasize a fixed group element