The semidirect product Lie group
LieGroups.LeftSemidirectProductGroupOperation
โ TypeLeftSemidirectProductGroupOperation{O1,O2,A} <: AbstractGroupOperation
A struct to model a semidirect Lie group product.
Let $(\mathcal N, โ)$ and $(\mathcal H, โ)$ be two Lie groups with group operations $โ$ and $โ$, respectively, as well as a group action $ฯ: \mathcal Hร\mathcal N โ \mathcal N$, cf AbstractLeftGroupActionType
.
We use here as well use the notation $ฯ_h: \mathcal N โ \mathcal N$ as a family of maps on $\mathcal N$
Then we define a group operation $โ$ on the product manifold $\mathcal Nร\mathcal H$ by
\[ (h_1,n_1) โ (h_2,n_2) := (h_1 โ h_2, ฯ_{h_2}(n_1) โ n_1).\]
See [HN12, Definition 9.2.22], second definition for more details.
Constructor
LeftSemidirectProductGroupOperation(
op1::AbstractGroupOperation,
op2::AbstractGroupOperation,
action::AbstractGroupActionType
)
Parameters
op1::AbstractGroupOperation
: The group operation $โ$ on $\mathcal H$op2::AbstractGroupOperation
: The group operation $โ$ on $\mathcal N$action::AbstractGroupActionType
The group action $ฯ$ of $\mathcal H$ on $\mathcal N$
LieGroups.RightSemidirectProductGroupOperation
โ TypeRightSemidirectProductGroupOperation{O1,O2,A} <: AbstractGroupOperation
A struct to model a semidirect Lie group product.
Let $(\mathcal N, โ)$ and $(\mathcal H, โ)$ be two Lie groups with group operations $โ$ and $โ$, respectively, as well as a group action $ฯ: \mathcal Hร\mathcal N โ \mathcal N$, cf AbstractGroupActionType
.
We use here as well use the notation $ฯ_h: \mathcal N โ \mathcal N$ as a family of maps on $\mathcal N$
Then we define a group operation $โ$ on the product manifold $\mathcal Nร\mathcal H$ by
\[ (n_1,h_1) โ (n_2,h_2) := (n_1 โ ฯ_{h_1}(n_2), h_1 โ h_2)\]
See [HN12, Definition 9.2.22], first definition for more details.
Constructor
RightSemidirectProductGroupOperation(
op1::AbstractGroupOperation,
op2::AbstractGroupOperation,
action::AbstractGroupActionType
)
Parameters
op1::AbstractGroupOperation
: The group operation $โ$ on $\mathcal N$op2::AbstractGroupOperation
: The group operation $โ$ on $\mathcal H$action::AbstractGroupActionType
: The group action $ฯ$ of $\mathcal H$ on $\mathcal N$
LieGroups.:โ
โ MethodL1 โ L2
โ(L1, L2)
For two LieGroups
L1
, L2
, generate the LeftSemidirectProductLieGroup
(L1, L2)
, where the corresponding default_left_action
(L1, L2)
is used.
LieGroups.:โ
โ MethodL1 โ L2
โ(L1, L2)
For two LieGroups
L1
, L2
, generate the RightSemidirectProductLieGroup
(L1, L2)
, where the corresponding default_right_action
(L1, L2)
is used.
LieGroups.LeftSemidirectProductLieGroup
โ FunctionLeftSemidirectProductLieGroup(
N::LieGroup, H::LieGroup, action::AbstractGroupActionType=default_left_action(N, H)
)
Generate the semidirect product Lie Group $\mathcal G = N โ H$ for an AbstractLeftGroupActionType
using the LeftSemidirectProductGroupOperation
for the group operation definition as well as [HN12, Definition 9.2.22], second definition, for more details.
The short form N
โ
H
can be used if the corresponding default_left_action
(N,H)
is the one you want to use.
LieGroups.RightSemidirectProductLieGroup
โ FunctionRightSemidirectProductLieGroup(
N::LieGroup, H::LieGroup, action::AbstractGroupActionType=default_right_action(N,H)
)
Generate the semidirect product Lie Group $\mathcal G = N โ H$ for an AbstractLeftGroupActionType
using the RightSemidirectProductGroupOperation
for the group operation definition as well as [HN12, Definition 9.2.22], first definition, for more details.
The short form N
โ
H
can be used if the corresponding default_right_action
(N,H)
is the one you want to use.