The semidirect product Lie group

LieGroups.LeftSemidirectProductGroupOperation โ€” Type
LeftSemidirectProductGroupOperation{O1,O2,A} <: AbstractGroupOperation

A struct to model a semidirect Lie group product.

Let $(\mathcal N, โ‹„)$ and $(\mathcal H, โ‹†)$ be two Lie groups with group operations $โ‹„$ and $โ‹†$, respectively, as well as a group action $ฯƒ: \mathcal Hร—\mathcal N โ†’ \mathcal N$, cf AbstractLeftGroupActionType.

We use here as well use the notation $ฯƒ_h: \mathcal N โ†’ \mathcal N$ as a family of maps on $\mathcal N$

Then we define a group operation $โˆ˜$ on the product manifold $\mathcal Nร—\mathcal H$ by

\[ (h_1,n_1) โˆ˜ (h_2,n_2) := (h_1 โ‹† h_2, ฯƒ_{h_2}(n_1) โ‹„ n_1).\]

See [HN12, Definition 9.2.22], second definition for more details.

Constructor

LeftSemidirectProductGroupOperation(
    op1::AbstractGroupOperation,
    op2::AbstractGroupOperation,
    action::AbstractGroupActionType
)

Parameters

  • op1::AbstractGroupOperation: The group operation $โ‹„$ on $\mathcal H$
  • op2::AbstractGroupOperation: The group operation $โ‹†$ on $\mathcal N$
  • action::AbstractGroupActionType The group action $ฯƒ$ of $\mathcal H$ on $\mathcal N$
source
LieGroups.RightSemidirectProductGroupOperation โ€” Type
RightSemidirectProductGroupOperation{O1,O2,A} <: AbstractGroupOperation

A struct to model a semidirect Lie group product.

Let $(\mathcal N, โ‹„)$ and $(\mathcal H, โ‹†)$ be two Lie groups with group operations $โ‹„$ and $โ‹†$, respectively, as well as a group action $ฯƒ: \mathcal Hร—\mathcal N โ†’ \mathcal N$, cf AbstractGroupActionType.

We use here as well use the notation $ฯƒ_h: \mathcal N โ†’ \mathcal N$ as a family of maps on $\mathcal N$

Then we define a group operation $โˆ˜$ on the product manifold $\mathcal Nร—\mathcal H$ by

\[ (n_1,h_1) โˆ˜ (n_2,h_2) := (n_1 โ‹„ ฯƒ_{h_1}(n_2), h_1 โ‹† h_2)\]

See [HN12, Definition 9.2.22], first definition for more details.

Constructor

RightSemidirectProductGroupOperation(
    op1::AbstractGroupOperation,
    op2::AbstractGroupOperation,
    action::AbstractGroupActionType
)

Parameters

  • op1::AbstractGroupOperation: The group operation $โ‹†$ on $\mathcal N$
  • op2::AbstractGroupOperation: The group operation $โ‹„$ on $\mathcal H$
  • action::AbstractGroupActionType: The group action $ฯƒ$ of $\mathcal H$ on $\mathcal N$
source
LieGroups.LeftSemidirectProductLieGroup โ€” Function
LeftSemidirectProductLieGroup(
    N::LieGroup, H::LieGroup, action::AbstractGroupActionType=default_left_action(N, H)
)

Generate the semidirect product Lie Group $\mathcal G = N โ‹‰ H$ for an AbstractLeftGroupActionType using the LeftSemidirectProductGroupOperation for the group operation definition as well as [HN12, Definition 9.2.22], second definition, for more details.

The short form Nโ‹‰H can be used if the corresponding default_left_action(N,H) is the one you want to use.

source
LieGroups.RightSemidirectProductLieGroup โ€” Function
RightSemidirectProductLieGroup(
    N::LieGroup, H::LieGroup, action::AbstractGroupActionType=default_right_action(N,H)
)

Generate the semidirect product Lie Group $\mathcal G = N โ‹Š H$ for an AbstractLeftGroupActionType using the RightSemidirectProductGroupOperation for the group operation definition as well as [HN12, Definition 9.2.22], first definition, for more details.

The short form Nโ‹ŠH can be used if the corresponding default_right_action(N,H) is the one you want to use.

source